Skip to main content
Log in

Influence Mechanisms of Trace H2O on the Generating Process of SF6 Spark Discharge Decomposition Components

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Trace H2O directly participates in the SF6 decomposition generating process under spark discharge, but its mechanism remains ambiguous. Thus , determining the influence rules of trace H2O on the decomposition characteristics of SF6 spark discharge is necessary . Moreover, the foundation of the effective spark discharge fault diagnosis methods should be established for SF6 gas-insulated apparatus. In this paper, a series of spark decomposition experiments of different proportions of SF6/H2O mixtures were conducted with a trace H2O injector accurately controlling H2O content. Influence mechanisms of trace H2O on the effective generation rates and the characteristic ratio of spark decomposition components were determined. Results show that trace H2O remarkably influences the effective generation rates of SF6 spark decomposition components, including SOF2, SOF4, SO2F2, SO2 and CF4. The characteristic ratio varies because of the distinct mechanisms of H2O on the components. Mathematical expression between the ratio and H2O contents was also derived. In addition, the X-ray photoelectron spectra show that the solid materials contain Al2O3 and AlF3, and the existing forms of S are sulfite and sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Istad M, Runde M (2010) Thirty-six years of sevice experience with a national population of gas-insulated substations. IEEE Trans. Power Deliv 25:2448–2454

    Article  Google Scholar 

  2. Wang W, Rong M, Wu Y (2014) Transport coefficients of high temperature SF6–He mixtures used in switching applications as an alternative to pure SF6. Plasma Chem Plasma Process 34(4):899–916

    Article  CAS  Google Scholar 

  3. Tang J, Liu F et al (2012) Partial discharge recognition through an analysis of SF6 decomposition products part 1 decomposition characteristics of SF6 under four different partial discharges. IEEE Trans Dielectr Electr Insul 19(1):29–36

    Article  CAS  Google Scholar 

  4. Chu FY (1986) SF6 decomposition in gas insulated equipment. IEEE Trans Electr Insul 21(5):693–725

    Article  Google Scholar 

  5. Eriksson A, Pettersson KG, Krenicky A (1994) Experience with gas insulated substations in the USA. Proceedings of IEEE conference on transmission and distribution, Chicago, USA

  6. Singha S, Thomas MJ (2003) Toepler’s spark law in a GIS with compressed SF6–N2 mixture. IEEE Trans Dielectr Electr Insul 10(3):498–505

    Article  CAS  Google Scholar 

  7. Sauers I, Ellis HW, Christophorou LG (1986) Neutral decomposition products in spark breakdown of SF6. IEEE Trans Electr Insul 21:111–120

    Article  Google Scholar 

  8. Van Brunt RJ, Herron JT (1990) Fundamental processes of SF6 decomposition and oxidation in glow and corona discharges. IEEE Trans Electr Insul 25(1):75–94

    Article  Google Scholar 

  9. Zeng F, Tang J, Zhang X et al (2015) Study on the influence mechanism of Trace H2O on SF6 thermal decomposition characteristic components. IEEE Trans Electr Insul 22:766–774

    Article  CAS  Google Scholar 

  10. Tang J, Liu F, Meng Q, Zhang X, Tao J (2012) Partial discharge recognition through an analysis of SF6 decomposition products part 2: feature extraction and decision tree-based pattern recognition. IEEE Trans Electr Insul 19(1):37–44

    Article  CAS  Google Scholar 

  11. Tang J, Zeng F, Zhang X, Pan J, Yao Q, Hou X, Tang Y (2014) Relationship between decomposition gas ratios and partial discharge energy in GIS, and the Influence of residual water and oxygen. IEEE Trans Electr Insul 21(3):1226–1234

    Article  CAS  Google Scholar 

  12. Tominaga S, Kuwahara H, Hirooka K, Yoshioka T (1981) SF6 gas analysis technique and its application for evaluation of internal conditions in SF6 gas equipment. IEEE Trans Power Appar Syst 9:4196–4206

    Article  Google Scholar 

  13. Van Brunt RJ (1985) Production rates for Oxyfluorides SOF2, SO2F2 and SOF4 in SF6 corona discharges. J Res Natl Bur Stand 90(3):229–253

    Article  Google Scholar 

  14. Belarbi A, Pradayrol C, Casanovas J (1995) Influence of discharge production conditions, gas pressure, current intensity and voltage type, on SF6 dissociation under point-plane corona discharges. J Appl Phys 77(4):1398–1406

    Article  CAS  Google Scholar 

  15. Zeng F, Tang J et al (2014) Decomposition characteristics of SF6 under thermal fault for temperatures below 400 degrees. IEEE Trans Electr Insul 21(3):995–1004

    Article  CAS  Google Scholar 

  16. Zhang X, Yao Y, Tang J et al (2008) Actual and perspective of proximate of SF6 decomposed products under partial discharge. High Voltage Technol 34(4):664–669 (in Chinese)

    CAS  Google Scholar 

  17. Van Brunt RJ, Siddagangappa MC (1988) Identification of corona discharge-induced SF6 oxidation mechanisms using SF6/18O2/H2O16 and SF6/16O2/H2O18 gas mixtures. Plasma Chem. Plasma P 8(2):207–223

    Article  Google Scholar 

  18. Tang J, Liu F, Zhang X, Ren X, Fan M (2012) Characteristics of the concentration ratio of SO2F2 to SOF2 as the decomposition products of SF6 under corona discharge. IEEE Trans Plasma Sci 40(1):56–62

    Article  CAS  Google Scholar 

  19. Tang J, Zeng F, Pan J (2013) Correlation analysis between formation process of SF6 decomposed components and partial discharge qualities. IEEE Trans Electr Insul 20(3):864–875

    Article  CAS  Google Scholar 

  20. Sauers I (1988) By-product formation in spark breakdown of SF6/O2 mixtures. Plasma Chem. Plasma P 8(2):247–262

    Article  CAS  Google Scholar 

  21. Ryan KR, Plumb IC (1988) Gas-phase Reactions in Plasmas of SF6 with O2 in He. Plasma Chem. Plasma P 8(3):263–280

    Article  CAS  Google Scholar 

  22. Piemontesi M (1994) Analysis of decomposition products of sulfur hexafluoride in negative DC corona with special emphasis on content of H2O and O2. IEEE Int Symp Electr Insul 23(2):499–503

    Google Scholar 

  23. Narengerile, Saito H, Watanabe T (2010) Decomposition mechanism of fluorinated compounds in water plasmas generated under atmospheric pressure. Plasma Chem. Plasma P 30(6):813–829

    Article  CAS  Google Scholar 

  24. Van Brunt RJ, Lazo TC, Anderson WE (1984) Generation rates for discharge generated SOF2, SO2F2 and SO2 in SF6 and SF6/H2O mixtures. In: Christophorou LG, Pace MO (eds) Gaseous dielectrics IV. Pergamon Press, Oxford, pp 276–285

    Google Scholar 

  25. Derdouri A, Casanovas J, Grob R, Mathieu J (1989) Spark decomposition of SF6/H2O mixtures. IEEE Trans Electr Insul 24:1147–1157

    Article  CAS  Google Scholar 

  26. Pradayrol C, Casanovas A, Casanovas J (1996) Influence of O2 and H2O on the spark decomposition of SF6 and SF6/CF4 mixtures. IEEE Int Symp Electr Insul 25(1):75–94

    Google Scholar 

  27. Casanovas AM, Diaz J, Casanovas J (2002) Spark decomposition of SF6, SF6/N2 (10:90 and 5:95) mixtures in the presence of solid additives (polyethylene, polypropylene or teflon), gaseous additives (methane, ethylene, octofluoropropane, carbon monoxide or dioxide), water or oxygen. J Phys D Appl Phys 35:2558–2569

    Article  CAS  Google Scholar 

  28. Tang J, Pan J, Yao Q et al (2013) Decomposition characteristic study of SF6 under fault temperature between 300–40 °C. Proc Chin Soc Electr Eng (CSEE) 32(31):232–240 (in Chinese)

    Google Scholar 

  29. IEC60480-2005 (2005) Guidelines for the checking and treatment of sulfur hexafluoride (SF6) taken from electrical equipment and specification for its re-use

  30. IEC60376-2005 (2005) Specification of technical grade sulfur hexafluoride (SF6) for use in electrical equipment

  31. Van Brunt RJ, Herron JT (1994) Plasma Chemical-model for decomposition of SF6 in a negative glow corona discharge. Phys Scr 53(2):9–29

    Article  Google Scholar 

  32. Sadeghi N, Debontride H, Turban G (1990) Kinetics of formation of sulfur dimers in pure SF6 and SF6–O2 discharges. Plasma Chem Plasma P 10(4):207–223

    Article  Google Scholar 

  33. Sauers I, Adcock JL, Christophorou LG (1985) Gas phase hydrolysis of sulfur tetrafluoride: a comparison of the gaseous and liquid phase rate constants. J Chem Phys 83(5):2618–2619

    Article  CAS  Google Scholar 

  34. Plumb IC, Ryan KR (1989) Gas-phase reactions in plasmas of SF6 with O2: reactions of F with SOF2 and SO2 and reactions of O with SOF2. Plasma Chem Plasma P 9(3):409–420

    Article  CAS  Google Scholar 

  35. Van Brunt RJ, Sauers I (1986) Gas-phase hydrolysis of SOF2 and SOF4. J Chem Phys 85(8):4377–4380

    Article  Google Scholar 

  36. Liu F, Tang J, Liu Y (2012) Mathematical model of influence of oxygen and moisture on feature concentration ratios of SF6 decomposition products. IEEE Power and Energy Society General Meeting, San Diego

    Google Scholar 

  37. Wagner CD, Naumkin AV, Kraut-Vass A (2003) NIST x-ray photoelectron spectroscopy database. National Institute of Standards and Technology

  38. Zhu Y, Zheng M (2010) Study on sulfur forms of coking coal in XPS analysis method. Coal Prep Technol 55–57 (in Chinese)

Download references

Acknowledgements

The research work has been funded by National Natural Science Foundation of China (51537009), Natural Science Foundation of Hubei Province (2015CFB165) and State Grid Corporation of China (Grant: 2014-1192). The authors thank the granting agency sincerely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Rao, X., Zeng, F. et al. Influence Mechanisms of Trace H2O on the Generating Process of SF6 Spark Discharge Decomposition Components. Plasma Chem Plasma Process 37, 325–340 (2017). https://doi.org/10.1007/s11090-016-9764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9764-8

Keywords

Navigation