Skip to main content
Log in

Experimental and Theoretical Optimization of Radio Frequency Hollow Cathode Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2017

Abstract

In this paper, the electron density in radio frequency (RF) hollow cathode discharge (HCD) is investigated in experiments and in simulation based on two-dimensional (2D) fluid model. The role of hole diameter on plasma density in RF HCD have been explored at various gas pressures. It is found that the optimal hole size for maximum plasma density decreases along with the increase of gas pressure, which is confirmed by simulated results. The simulations reveal that the high plasma density is owing to the hollow cathode effect in the hollow cathode. It is obtained that the optimal hole diameter in RF HCD is approximately sum of twice thickness of plasma sheath and triple the electron-neutral mean free path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Courteille C, Dorier JL, Hollenstein Ch, Sansonnens L, Howling AA (1996) Plasma Sources Sci Technol 5:210

    Article  CAS  Google Scholar 

  2. Hopwood J (1992) Plasma Sources Sci Technol 1:109

    Article  CAS  Google Scholar 

  3. Popescu S, Ohtsu Y, Fujita H (2006) Phys Rev E 73:066405

    Article  CAS  Google Scholar 

  4. Nagatsu M, Ghanashev I, Sugai H (1998) Plasma Sources Sci Technol 7:230

    Article  CAS  Google Scholar 

  5. Pillarisetty R (2011) Nature 479:324

    Article  CAS  Google Scholar 

  6. Kobayashi Y, Kumakura K, Akasaka T, Makimoto T (2012) Nature 484:223

    Article  CAS  Google Scholar 

  7. Armacost M, Hoh PD, Wise R, Yan W, Brown JJ, Keller JH, Kaplita GA, Halle SD, Muller KP, Naeem MD, Srinivasan S, Ng HY, Gutsche M, Gutmann A, Spuler B (1999) IBM J Res Dev 43:39

    Article  CAS  Google Scholar 

  8. Lieberman MA, Lichtenberg AJ (2005) Principles of Plasma Discharges and Materials Processing, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  9. Lieberman MA, Booth JP, Chabert P, Raxand JM, Turner MM (2002) Plasma Sources Sci Technol 11:283

    Article  Google Scholar 

  10. Chabert P (2007) J Phys D Appl Phys 40:R63

    Article  CAS  Google Scholar 

  11. Turner MM, Chabert P (2007) Plasma Sources Sci Technol 16:364

    Article  CAS  Google Scholar 

  12. Bera K, Rauf S, Ramaswamy K, Collins K (2009) J Appl Phys 106:33301

    Article  Google Scholar 

  13. Rauf S, Bera K, Collins K (2008) Plasma Sources Sci Technol 17:035003

    Article  Google Scholar 

  14. Lee HS, Lee YS, Seo SH, Chang HY (2011) Thin Solid Films 519:6955

    Article  CAS  Google Scholar 

  15. Lee HS, Lee YS, Seo SH, Chang HY (2010) Appl Phys Lett 97:081503

    Article  Google Scholar 

  16. Ohtsu Y, Urasaki H (2010) Plasma Sources Sci Technol 19:045012

    Article  Google Scholar 

  17. Ohtsu Y, Kawasaki Y (2013) J Appl Phys 113:033302

    Article  Google Scholar 

  18. Ohtsu Y, Nakamura C, Misawa T, Fujita H, Akiyama M, Yukimura K (2009) Plasma Process Polym 6:458

    Article  Google Scholar 

  19. Ohtsu Y, Eguchi J, Yahata Y (2014) Vacuum 101:46

    Article  CAS  Google Scholar 

  20. Tabuchia T, Toyoshima Y, Takashiri M (2014) Vacuum 101:125

    Article  Google Scholar 

  21. Ohtsu Y, Yanagise T (2015) Plasma Sources Sci Technol 034005:24

    Google Scholar 

  22. Ohtsu Y, Matsumoto N, Schulze J, Schuengel E (2016) Phys Plasmas 23:033510

    Article  Google Scholar 

  23. Ohtsu Y, Yahata Y, Kagami J, Kawashimo Y, Takeuchi T (2013) IEEE Trans Plasma Sci 41:8

    Article  Google Scholar 

  24. Schmidt N, Schulze J, Schüngel E, Czarnetzki U (2013) J Phys D Appl Phys 46:505202

    Article  Google Scholar 

  25. Jiang XX, He F, Chen Q, Ge T, Ouyang JT (2014) Phys Plasmas 21:033508

    Article  Google Scholar 

  26. Lymberopoulos DP, Economou DJ (1993) J Appl Phys 73:3668

    Article  CAS  Google Scholar 

  27. Helm H (1972) Z fur Naturforschung A 27A:12

    Google Scholar 

  28. Schoenbach KH, Verhappen R, Tessnow T, Peterkin FE, Byszewski WW (1996) Appl Phys Lett 68:1

    Article  Google Scholar 

  29. Gewartowski JW, Wston HA (1965) Principles of Electron Tubes. Van Norstrand, Princeton

    Google Scholar 

  30. Frame JW, Wheeler DJ, DeTemple TA, Eden JG (1997) Appl Phys Lett 71:9

    Article  Google Scholar 

  31. Moskalev BI (1969) Hollow-Cathode Discharge. Energiya, Moscow

    Google Scholar 

  32. Raizer YR (1991) Gas discharge physics. Springer, Moscow

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11375031, 11505013), and BJNSFC (No.4162024,KZ201510015014, KZ04190116009/001, KM201510015009 and KM201510015002), CGPT, CIT&TCD 201404130, and State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE15208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Xian Jiang.

Additional information

The original version of this article is revised: The original version of the article contained an error in the article title. The title is corrected as “Experimental and Theoretical Optimization of Radio Frequency Hollow Cathode Discharge”.

An erratum to this article is available at http://dx.doi.org/10.1007/s11090-017-9800-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, XX., Li, WP., Xu, SW. et al. Experimental and Theoretical Optimization of Radio Frequency Hollow Cathode Discharge. Plasma Chem Plasma Process 37, 1281–1290 (2017). https://doi.org/10.1007/s11090-016-9770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9770-x

Keywords

Navigation