Skip to main content
Log in

Air Atmospheric Dielectric Barrier Discharge Plasma Induced Germination and Growth Enhancement of Wheat Seed

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Air atmospheric dielectric barrier discharge plasma (DBD) was attempted to pretreat wheat seed to improve its germination and growth in this study. The effects of the DBD plasma treatment on the wheat seed germination, seedling growth, osmotic-adjustment products, lipid peroxidation level, and antioxidant enzymes activity were investigated. The experimental results showed that the DBD plasma treatment with an appropriate time scale could promote the wheat seed germination and seedling growth. The germination potential, germination rate, germination index, and vigor index increased by 26.7, 9.1, 16.9, and 46.9% after 7 min’s DBD plasma treatment, respectively; the root length, shoot length, fresh weight, and dry weight of the seedlings also increased after the DBD plasma treatment. The osmotic-adjustment products, proline and soluble sugar contents, in the wheat seedlings were significantly enhanced after the DBD plasma treatment with an appropriate time scale, while the malondialdehyde content decreased. Moreover, the activities of superoxide dismutase and peroxidase also increased after the DBD plasma treatment. The DBD plasma treatment led to etching effect on the wheat seed coat, resulting in the improvement of its water absorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashrafi E, Razmjoo J (2015) Seed treatment to overcome salt and drought stresses during germination in safflower (Carthamus tinctorius L.). J Plant Nutr 38:2151–2158

    Article  CAS  Google Scholar 

  2. Miano AC, Forti VA, Abud HF, Gomes-Junior FG, Cicero SM, Augusto PED (2015) Effect of ultrasound technology on barley seed germination and vigour. Seed Sci Technol 43:297–302

    Article  Google Scholar 

  3. Adetimirin VO (2008) Stand establishment and early field vigour variation in a tropicalised shrunken-2 maize population. Field Crop Res 108:143–149

    Article  Google Scholar 

  4. Tiwari TN, Srivastava TK, Mandal AB, Kamal D (2015) Effect of seed coating with Hoagland solution on seed quality and field performance in rice (Oryza sativa). Indian J Agric Sci 85:1153–1157

    CAS  Google Scholar 

  5. Mondo VHV, Cicero SM, Dourado-Neto D, Pupim TL, Dias MAN (2013) Effect of seed vigor on intraspecific competition and grain yield in maize. Agron J 105:222–228

    Article  Google Scholar 

  6. Zehra A, Shaikh F, Ansari R, Gul B, Khan MA (2013) Effect of ascorbic acid on seed germination of three halophytic grass species under saline conditions. Grass Forage Sci 68:339–344

    Article  CAS  Google Scholar 

  7. Zhao GW, Jiang XW (2014) Roles of gibberellin and auxin in promoting seed germination and seedling vigor in pinus massoniana. For Sci 60:367–373

    Google Scholar 

  8. Goussous SJ, Samarah NH, Alqudah AM, Othman MO (2010) Enhancing seed germination of four crop species using an ultrasonic technique. Exp Agric 46:231–242

    Article  Google Scholar 

  9. Shi MF, Fan JJ, Li SJ, Yu XL, Liang XM (2014) The influence of high voltage electric field for barley seed germination and its mechanism. Appl Mech Mater 675–677:1142–1145

    Article  Google Scholar 

  10. Yao WF, Shen YB (2015) Effect of magnetic treatment on seed germination of loblolly pine (Pinus taeda L.). Scand J For Res 30:639–642

    Article  Google Scholar 

  11. Xu G, Wang XT, Gan CL, Fang YQ, Zhang M (2012) Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination. Nucl Instrum Meth B 287:76–84

    Article  CAS  Google Scholar 

  12. Moon JD, Chung HS (2000) Acceleration of germination of tomato seed by applying AC electric and magnetic fields. J Electrostat 48:103–114

    Article  Google Scholar 

  13. Denes F, Manolache S, Young RA (1999) Synthesis and surface functionalization under cold-plasma conditions. J Photopolym Sci Technol 12:27–38

    Article  CAS  Google Scholar 

  14. Sera B, Spatenka P, Sery M, Vrchotova N, Hruskova I (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 3:2963–2968

    Article  Google Scholar 

  15. Li L, Jiang JF, Li JG, Shen MC, He X, Shao HL, Dong YH (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859–5865

    CAS  Google Scholar 

  16. Jiang N, Lu N, Shang KF, Li J, Wu Y (2013) Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasma. Environ Sci Technol 47:9898–9903

    Article  CAS  Google Scholar 

  17. Ji SH, Kim T, Panngom K, Hong YJ, Pengkit A, Park DH, Kang MH, Lee SH, Im JS, Kim JS, Uhm HS, Choi EH, Park G (2015) Assessment of the effects of nitrogen plasma and plasma-generated nitric oxide on early development of coriandum sativum. Plasma Process Polym 12:1164–1173

    Article  CAS  Google Scholar 

  18. Kitazaki S, Sarinont T, Koga K, Hayashi N, Shiratani M (2014) Plasma induced long-term growth enhancement of Raphanus sativus L. using combinatorial atmospheric air dielectric barrier discharge plasmas. Curr Appl Phys 14:149–153

    Article  Google Scholar 

  19. Henselova M, Slovakova L, Martinka M, Zahoranova A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67:490–497

    Article  CAS  Google Scholar 

  20. Meng YR, Qu GZ, Wang TC, Sun QH, Liang DL, Hu SB (2017) Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process 37:1105–1119

    Article  CAS  Google Scholar 

  21. Tong JY, He R, Zhang XL, Zhan RT, Chen WW, Yang SZ (2014) Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of andrographis paniculata. Plasma Sci Technol 16:260–266

    Article  CAS  Google Scholar 

  22. Bates LS, Waldren RP, Teare ID (2013) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  Google Scholar 

  23. Ci DW, Jiang D, Dai TB, Jing Q, Cao WX (2009) Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere 77:1620–1625

    Article  CAS  Google Scholar 

  24. Liu H, Zhang YH, Yin H, Wang WX, Zhao XM, Du YG (2013) Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol Biochem 62:33–40

    Article  CAS  Google Scholar 

  25. Liu BH, Cheng L, Ma FW, Liang D, Zou YJ (2012) Influence of rootstock on drought response in young ‘Gale Gala’ apple (Malus domestica Borkh.) trees. J Sci Food Agric 92:2421–2427

    Article  CAS  Google Scholar 

  26. Chance M, Maehly AC (1955) Assay of catalases and peroxidases. Meth Enzymol 2:764–817

    Article  Google Scholar 

  27. Yang L, Shen HL (2011) Effect of electrostatic field on seed germination and seedling growth of Sorbus pohuashanesis. J For Res 22:27–34

    Article  CAS  Google Scholar 

  28. Dhayal M, Lee SY, Park SU (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80:499–506

    Article  CAS  Google Scholar 

  29. Jiang JF, He X, Li L, Li JG, Shao HL, Xu QL, Ye RH, Dong YH (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16:54–58

    Article  Google Scholar 

  30. Li L, Li JG, Shen MC, Zhang CL, Dong YH (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5:13033–13040

    Article  CAS  Google Scholar 

  31. Sera B, Stranak V, Sery M, Tichy M, Spatenka P (2008) Germination of chenopodium album in response to microwave plasma treatment. Plasma Sci Technol 10:506–511

    Article  CAS  Google Scholar 

  32. Yin MQ, Huang MJ, Ma BZ, Ma TC (2005) Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Sci Technol 7:3143–3147

    Article  Google Scholar 

  33. Stolarik T, Henselova M, Martinka M, Novak O, Zahoranova A, Cernak M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676

    Article  CAS  Google Scholar 

  34. Zhou ZW, Huang YF, Yang SZ, Chen W (2011) Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agric Sci 2:23–27

    Google Scholar 

  35. Wan YY, Chen SY, Huang YW, Li X, Zhang Y, Wang XJ, Bai JG (2014) Caffeic acid pretreatment enhances dehydration tolerance in cucumber seedlings by increasing antioxidant enzyme activity and proline and soluble sugar contents. Sci Hortic 173:54–64

    Article  CAS  Google Scholar 

  36. Javed N, Ashraf M, Akram NA, Al-Qurainy F (2011) Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochem Photobiol 87:1354–1362

    Article  CAS  Google Scholar 

  37. Chen HH, Chen YK, Chang HC (2012) Evaluation of physicochemical properties of plasma treated brown rice. Food Chem 135:74–79

    Article  CAS  Google Scholar 

  38. McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  39. Grzegorzewski F, Rohn S, Kroh LW, Geyer M, Schluter O (2010) Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem 122:1145–1152

    Article  CAS  Google Scholar 

  40. Krentsel E, Fusselman S, Yasuda H, Yasuda T, Miyama M (1994) Penetration of plasma surface modification. 2. CF4 and C2F4 low-temperature cascade arc torch. J Polym Sci A Plasma Chem 32:1839–1845

    Article  CAS  Google Scholar 

  41. Filatova I, Azharonok V, Kadyrov M, Beljavsky V, Gvozdov A, Shik A, Antonuk A (2011) The effect of plasma treatment of seeds of some grains and legumes on their sowing quality and productivity. Rom J Phys 56:139–143

    Google Scholar 

  42. Wu AJ, Zhang H, Li XD, Lu SY, Du CM, Yan JH (2014) Spectroscopic diagnostics of rotating gliding arc plasma codriven by a magnetic field and tangential flow. IEEE Trans Plasma Sci 42:3560–3568

    Article  CAS  Google Scholar 

  43. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741–748

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Projects funded by State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021402-1520), Institute of Soil and Water Conservation (A315021525), the National Natural Science Foundation, P.R. China (51608448), and Fundamental Research Fund for the Central Universities (Z109021617) for the financial supports to this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiecheng Wang or Shibin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, T., Meng, Y. et al. Air Atmospheric Dielectric Barrier Discharge Plasma Induced Germination and Growth Enhancement of Wheat Seed. Plasma Chem Plasma Process 37, 1621–1634 (2017). https://doi.org/10.1007/s11090-017-9835-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9835-5

Keywords

Navigation