Skip to main content
Log in

Spatial Variations of Plasma Parameters in a Hollow Cathode Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The transformations of the electron energy distribution (EEDF), their concentration, and plasma space potential along the discharge gap between the hollow rectangular cathode and the mesh anode were experimentally studied. The discharge was 3 cm long, with a cross-section of 10 cm2. A new version of measurements with several single probes with the formation of current-voltage characteristics (IVC) in the probe circuit was proposed with the simultaneous application of voltages in the form of a combination of periodic and noise signals. The proportions of the signals were varied for different sections of the current-voltage characteristics. Measurements along the central axis of the discharge were taken. The dynamic range of the EEDF was not less than 4 orders of magnitude at the electron concentrations of 2–13 × 1010 cm−3, which exceeds the best known achievements. Measurements for discharge in helium at reduced pressures of 1–1.2 mbar and currents of 150–400 mA showed that the EEDFs differ from Maxwell ones, with an excess of fast electrons in the region of 10–20 eV at medium energies 4–6 eV. The fraction of fast electrons decreased in regions closer to the anode, which is associated with the nonlocality of the mechanism of the spectrum formation of free electrons. EEDFs transformations led to the space dependence of electron drift velocities on the plasma area. The dependence of the voltage drop across the cathode on the gas pressure and discharge current was noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. ITER Final Design Report No. G 31 DDD 14 01.07.19 W 0.1. (2001). Section 3.1: Vacuum pumping and fuelling stems

  2. Durocher A, Bruno A, Chantant M, Gargiulo L, Gherman T, Hatchressian JC, Houry M, Le R, Mouyon D (2013) Fusion Eng Des 88:1390–1394. https://doi.org/10.1016/j.fusengdes.2013.02.078

    Article  CAS  Google Scholar 

  3. Bernatskiy AV, Ochkin VN, Kochetov IV (2016) J Phys D Appl Phys 49:395204. https://doi.org/10.1088/0022-3727/49/39/395204

    Article  CAS  Google Scholar 

  4. Bernatskiy AV, Kochetov IV, Ochkin VN (2019) Plasma Sources Sci Technol 28:105002. https://doi.org/10.1088/1361-6595/ab4301

    Article  CAS  Google Scholar 

  5. Bernatskiy AV, Kochetov IV, Ochkin VN (2020) Plasma Phys Rep 46:874–919. https://doi.org/10.1134/S1063780X20090020

    Article  Google Scholar 

  6. Bernatskiy AV, Ochkin VN, Afonin ON, Antipenkov AB (2015) Plasma Phys Rep 41:705–714. https://doi.org/10.1134/S1063780X15090032

    Article  CAS  Google Scholar 

  7. Bernatskiy AV, Ochkin VN, Bafoev RN (2016) Bull Lebedev Phys Inst 43:195–198. https://doi.org/10.3103/S1068335616060038

    Article  Google Scholar 

  8. Schott L (1968) Plasma diagnostics. North Holland Publishing Co., Amsterdam

    Google Scholar 

  9. Lua X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Phys Rep 630:1–84. https://doi.org/10.1016/j.physrep.2016.03.003

    Article  CAS  Google Scholar 

  10. Hori M, Goto T (2002) Appl Surf Sci 192:135–160. https://doi.org/10.1016/S0169-4332(02)00024-7

    Article  CAS  Google Scholar 

  11. Lopaev DV, Volynets AV, Zyryanov SM, Zotovich AI, Rakhimov AT (2017) J Phys D Appl Phys 50:075202. https://doi.org/10.1088/1361-6463/50/7/075202

    Article  CAS  Google Scholar 

  12. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: The art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  13. Golubovskii YB, Nekuchaev VS, Ponomarev NS (1998) Tech Phys 43:288–295 https://doi.org/10.1134/1.1258912

    Article  Google Scholar 

  14. Godyak VA, Piejak RB, Alexandrovich BM (1992) Plasma Sources Sci Technol 1:36–58. https://doi.org/10.1088/0963-0252/1/1/006

    Article  CAS  Google Scholar 

  15. Godyak VA, Demidov VI (2011) J Phys D Appl Phys 44:233001. https://doi.org/10.1088/0022-3727/44/23/233001

    Article  CAS  Google Scholar 

  16. Godyak VA, Alexandrovich BM (2015) J Appl Phys 118:233302. https://doi.org/10.1063/1.4937446

    Article  CAS  Google Scholar 

  17. Godyak VA, Alexandrovich BM, Kolobov VI (2019) Phys Plasmas 26:033504. https://doi.org/10.1063/1.5088706

    Article  CAS  Google Scholar 

  18. Mott-Smith HM, Langmuir I (1926) Phys Rev 28:727–763. https://doi.org/10.1103/PhysRev.28.727

    Article  CAS  Google Scholar 

  19. Druyvesteyn MJ (1930) Z Phys 64:781–798. https://doi.org/10.1007/BF01773007

    Article  CAS  Google Scholar 

  20. Cherrington BE (1982) Plasma Chem Plasma Process 2:113–140. https://doi.org/10.1007/BF00633129

    Article  CAS  Google Scholar 

  21. Mizeraczyk J (1987) J Phys D Appl Phys 20:429–437. https://doi.org/10.1088/0022-3727/20/4/006

    Article  CAS  Google Scholar 

  22. Bazhenov VY, Ryabtsev AV, Soloshenko IA, Terent'eva AG, Khomich VA, Tsiolko VV, Shchedrin AI (2001) Plasma Phys Rep 27:813–818. https://doi.org/10.1134/1.1401944

    Article  Google Scholar 

  23. Jiang X, Li W, Xu S, He F, Chen Q (2017) Plasma Chem Plasma Process 37:1281–1290 https://doi.org/10.1007/s11090-016-9770-x

    Article  CAS  Google Scholar 

  24. Andreev SN, Bernatskiy AV, Ochkin VN (2019) J Phys Conf Ser 1370:012011. https://doi.org/10.1088/1742-6596/1370/1/012011

    Article  CAS  Google Scholar 

  25. Sigeneger F, Dyatko NA, Winkler R (2003) Plasma Chem Plasma Process 23:103–116. https://doi.org/10.1023/A:1022420920041

    Article  CAS  Google Scholar 

  26. Winkler R, Petrov G, Sigeneger F, Uhrlandt D (1997) Plasma Sources Sci Technol 6:118. https://doi.org/10.1088/0963-0252/6/2/005

    Article  CAS  Google Scholar 

  27. Savitzky A, Golay MJE (1964) Anal Chem 36:1627–1639 https://doi.org/10.1021/ac60214a047

    Article  CAS  Google Scholar 

  28. Tsendin LD (2010) Phys-Usp 53:133–157. https://doi.org/10.3367/UFNe.0180.201002b.0139

    Article  Google Scholar 

  29. Lukovnikov AI, Novgorodov MZ (1971) Sov Phys Lebedev Inst Rep 1:27

    Google Scholar 

  30. Demidov VI, Koepke ME, Kurlyandskaya IP, Malkov MA (2020) Phys Plasmas 27:020501. https://doi.org/10.1063/1.5127749

    Article  CAS  Google Scholar 

  31. Granovskiy VL (1971) Elektricheskiy tok v gaze: Ustanovivshiysya tok. Nauka, Moscow (in Russian)

    Google Scholar 

  32. Arslanbekov RR, Kudryatsev AA, Tobin RC (1998) Plasma Sources Sci Technol 7:310–322. https://doi.org/10.1088/0963-0252/7/3/009

    Article  CAS  Google Scholar 

  33. Hagelaar GJM, Mihailova DB, Dijk J (2010) J Phys D Appl Phys 43:465204. https://doi.org/10.1088/0022-3727/43/46/465204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to I. V. Kochetov and V. V. Lagunov for a discussion of the work. This work was supported by the Russian Science Foundation, Grant No. 19-12-00310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bernatskiy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, S.N., Bernatskiy, A.V. & Ochkin, V.N. Spatial Variations of Plasma Parameters in a Hollow Cathode Discharge. Plasma Chem Plasma Process 41, 659–672 (2021). https://doi.org/10.1007/s11090-020-10137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10137-4

Keywords

Navigation