Skip to main content
Log in

Solid State Fermentation Optimization of Pleurotus Ostreatus for Lovastatin Production

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The present study was aimed at optimization of the solid state fermentation of lovastatin (HMG-CoA reductase inhibitor) using the Plackett – Burman (PB) design and response surface methodology (RSM) for edible and medicinal mushroom Pleurotus ostreatus so as to improve Pleurotus-fermented products (like red yeast rice) with health promoting properties. According to the results of PB design, the barley, yeast extract, and particle size of the solid substrate were found to have significant effect on lovastatin production. The concentrations of barley and yeast extract and the particle size of the solid substrate were further optimized by RSM. As a result, high lovastatin production (34.97 mg/g) was achieved at the optimized conditions of barley (8 g), yeast extract (1% w/w), and particle size of the solid substrate (0.5 - 1 mm) at 28°C for 6 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. S. P. Wasser, Int. J. Med. Mushrooms, 12(1), 1 – 16 (2010).

    CAS  Google Scholar 

  2. M. L. Gargano, L. J. L. D. van Griensven, O. S. Isikhuemhen, et al., Plant Biosystems, 151(3), 548 – 565 (2017).

    Google Scholar 

  3. N. Alam, R. Amin, A. Khan, et al., Mycobiology, 36(4), 228 – 232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Hadar and E. Cohen-Arazi, Appl. Environ. Microbiol., 51(6), 1352 – 1354 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. E. Vamanu, Molecules,17(4), 3653 – 3671 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. N. Gunde-Cimerman, A. Plemenitas and A. Cimerman, FEMS Microbiol. Lett., 113(3), 333 – 338 (1993).

    CAS  PubMed  Google Scholar 

  7. H. Lee, Y. H. Hung and C. C. Chou, Int. J. Food Microbiol.,121(2), 150 – 156 (2008).

    CAS  PubMed  Google Scholar 

  8. S. Subramaniam, V. Sabaratnam, U. R. Kuppusamy, et al., Int. J. Med. Mushrooms, 16(3), 259 – 267 (2014).

    CAS  PubMed  Google Scholar 

  9. F. H. Zhai, Q. Wang and J. R. Han, J. Cereal Sci.,65, 202 – 208 (2015).

    CAS  Google Scholar 

  10. L. Bao, Y. Li, Q. Wang, et al., Mycology, 4(2), 96 – 102 (2013).

    CAS  Google Scholar 

  11. N. Nakamura, T. Hamazaki, M. Ohta, et al., Int. J. Clin. Lab. Res., 29(1), 22 – 25 (1999).

    CAS  PubMed  Google Scholar 

  12. W. Alberts, A. J. Chen, G. Kuron, et al., Proc. Natl. Acad. Sci. USA, 77(7), 3957 – 3961 (1980).

    CAS  PubMed  Google Scholar 

  13. A. Endo, J. Antibiotics,32(8), 852 – 854 (1979).

    CAS  Google Scholar 

  14. A. Endo, Proc. Jpn. Acad. Ser. B, 86(5), 484 – 493 (2010).

    CAS  Google Scholar 

  15. Y. Ding, L. Pu and J. Kan, J. Funct. Foods, 32, 80 – 89 (2017).

    CAS  Google Scholar 

  16. N. Gunde-Cimerman and A. Cimerman, Exp. Mycol.,19(1), 1 – 6 (1995).

    CAS  PubMed  Google Scholar 

  17. J. Alarcón, S. Àguila, P. Arancibia-Avila, et al., Z. Naturforsch, 58(1 – 2), 62 – 64 (2003).

  18. S. Y. Chen, K. J. Ho, Y. J. Hsieh, et al., LWT-Food Sci. Technol.,47(2), 274 – 278 (2012).

    CAS  Google Scholar 

  19. B. Atli and M. Yamac, Int. J. Med. Mushrooms, 14(2), 149 – 159 (2012).

    CAS  PubMed  Google Scholar 

  20. B. Atli, M. Yamac, and Z. Yildiz, Int. J. Med. Mushrooms, 15(5), 487 – 495 (2013).

    CAS  PubMed  Google Scholar 

  21. P. Bobek, M. Hromadova, and L. Ozdin, Experientia, 51(6), 589 – 591 (1995).

    CAS  PubMed  Google Scholar 

  22. D. I. Abrams, P. Couey, S. B. Shade, et al., BMC Complementary Altern. Med., 11, 60 (2011).

    CAS  Google Scholar 

  23. N. Alam, N. Y. Ki, S. L. Jae, et al., Saudi J. Biol. Sci., 18(4), 403 – 409 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. M. H. Z. Abidin, N. Abdullah, and N. Z. Abidin, Int. J. Food Prop.,20(6), 1251 – 1261 (2017).

    CAS  Google Scholar 

  25. K. Piska, K. Su3kowska-Ziaja and B. Muszyñska, Acta Sci. Pol-Hortoru, 16(1), 151 – 161 (2017).

  26. M. P. Santos, R. C. Marcante, T. T. Santana, et al., Int. J. Med. Mushrooms,17(2), 169 – 178 (2015).

    PubMed  Google Scholar 

  27. L. Opletal, L. Jahodár, V. Chobot, et al., Br. J. Biomed. Sci., 54(4), 240 – 243 (1997).

    CAS  PubMed  Google Scholar 

  28. I. Schneider, G. Kressel, A. Meyer, et al., J. Funct. Foods,3(1),17 – 24 (2011).

  29. A. Blandino, M. E. Al-Aseeri, S. S. Pandiella, et al., Food Res.Int.,36(6), 527 – 543 (2003).

    CAS  Google Scholar 

  30. H. R. Valera, J. Gomes, S. Lakshmi, et al., Enzyme Microb. Technol., 37(5), 521 – 526 (2005).

    CAS  Google Scholar 

  31. R. L. Plackett and J. P. Burman, Biometrika,33(4), 305 – 325 (1946).

    Google Scholar 

  32. S. A. Sayyad, B. P. Panda, S. Javed, et al., Appl. Microbiol. Biotechnol., 73(5), 1054 – 1058 (2007).

    CAS  PubMed  Google Scholar 

  33. B. Panda, S. Javed, and M. Ali, Biotechnol. Bioprocess Eng., 14(1), 123 – 127 (2009).

    CAS  Google Scholar 

  34. N. Jaivel and P. Marimuthu, Int. J. Engineering Sci. Technol., 2(7), 2607 – 2611(2010).

    Google Scholar 

  35. C. Desgranges, C. Vergoignan, M. Georges, et al., Appl. Microbiol. Biotechnol., 35(2), 200 – 205 (1991).

    CAS  Google Scholar 

  36. P. Patakova, J. Ind. Microbiol. Biotechnol., 40(2), 169 – 181 (2013).

    CAS  Google Scholar 

  37. C. C. Lin, T. C. Li, and M. M. Lai, Eur. J. Endocrinol., 153(5), 679 – 686 (2005).

    CAS  PubMed  Google Scholar 

  38. M. Klimek, S. Wang and A. Ogunkanmi, P&T,34 (6), 313 – 327 (2009).

    Google Scholar 

  39. C. H. Lee, C. L. Lee, and T. M. Pan, J. Food. Sci.,75, T91–T97 (2010).

    CAS  Google Scholar 

  40. X. Ji, J. Xu, X. Wang, et al., J. Food Sci., 80(6), T1438 – 1444 (2015).

    CAS  PubMed  Google Scholar 

  41. E. R. Farnworth, 2nd ed. CRC Press; Boca Raton, FL, USA, (2008), pp. 1 – 494.

  42. K. C. L. Mulder, F. Mulinari, O. L. Franco, et al., Biotechnol. Adv., 33(6), 648 – 665 (2015).

    CAS  PubMed  Google Scholar 

  43. P. Sharma and S. L. Kotari, Food Rev. Int.,33(4), 359 – 381 (2017).

    CAS  Google Scholar 

  44. M. Azeem, Y. Saleem, Z. Hussain, et al., Pharm. Chem. J.,52(3), 284 – 289 (2018).

    CAS  Google Scholar 

  45. S. Y. Chen, K. J. Ho, Y. J. Hsieh, et al., LWT-Food Sci. Technol.,47(2), 274 – 278 (2012).

    CAS  Google Scholar 

  46. N. Gunde-Cimerman, J. Friedrich, A. Cimerman, et al., FEMS Microbiol. Lett.,111(2 – 3), 203 – 206 (1993).

  47. S. M. Samiee, N. Moazami, S. Haghighi, et al., Iran. Biomed. J., 7(1), 29 – 33 (2003).

    CAS  Google Scholar 

  48. B. J. Xu, Q. J. Wang, X. Q. Jia, et al., Biotechnol. Bioprocess Eng., 10(1), 78 – 84 (2005

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Yamaç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlı, B., Yamaç, M., Yıldız, Z. et al. Solid State Fermentation Optimization of Pleurotus Ostreatus for Lovastatin Production. Pharm Chem J 53, 858–864 (2019). https://doi.org/10.1007/s11094-019-02090-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-019-02090-0

Keywords

Navigation