Skip to main content
Log in

The Effects of Milling on the Surface Properties of Form I Paracetamol Crystals

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The effects of milling and particle size on surface energies of form I paracetamol crystals are reported.

Methods

Paracetamol crystals (75–850 μm) were obtained by cooling methanol and acetone saturated solutions. Additionally, macroscopic (>2 cm) single crystals were grown by slow solvent evaporation from saturated solutions, ball milled and sieved into different particle size fractions. Surface properties were characterised using Inverse Gas Chromatography and compared with those calculated from sessile drop contact angle measurements on macroscopic single crystals.

Results

Dispersive surface energies, \( \gamma ^{d}_{{{\text{SV}}}} \) for milled samples increased by 20% with decreasing particle size. With decreasing particle size acceptor numbers, K A values were constant but donor numbers, K B decreased. For unmilled materials K B was comparable to K A but with a significantly lower \( \gamma ^{d}_{{{\text{SV}}}} \)of only 33 mJ/m2. Milling resulted in fracture along the crystal's lowest attachment energy plane (010), exposing facets of different surface chemistry to that of the native external facets. θ for the (010) fracture plane confirmed a higher \( \gamma ^{d}_{{{\text{SV}}}} \) compared to external facets such as (011) of single crystals.

Conclusions

Milling exposes a hydrophobic surface for paracetamol form I crystals which becomes increasingly more dominant with decreasing particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. C. Rowe. Correlation between predicted binder spreading coefficients and measured granule and tablet properties in the granulation of paracetamol. Int. J. Pharm. 58:209–213 (1990).

    Article  CAS  Google Scholar 

  2. G. Buckton. Assessment of the wettability of pharmaceutical powders. In: K. L. Mittal (ed.), Contact Angle, Wettability and Adhesion, VSP, Utrecht, The Netherlands, 1993, pp. 437–451.

    Google Scholar 

  3. D. Winn and M. F. Doherty. Modeling crystal shapes of organic materials grown from solution. AIChE J. 46:1348–1367 (2000).

    Article  CAS  Google Scholar 

  4. V. Chikhalia, R. T. Forbes, R. A. Storey, and M. Ticehurst. The effect of crystal morphology and mill type on milling induced crystal disorder. Eur. J. Pharm. Sci. 27:19–26 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. T. Young. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lon. 95:65–87 (1805).

    Article  Google Scholar 

  6. D. Williams. Inverse gas chromatography. In: H. Ishida (ed.), Characterisation of Composite Materials, Butterworth-Heinemann, London, 1994, pp. 80–104.

    Google Scholar 

  7. F. Thielmann. Introduction into the characterisation of porous materials by inverse gas chromatography. J. Chromatogr. A 1037:115–123 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. J. R. Conder and C. L. Young. Physicochemical Measurement by Gas Chromatography. Wiley, Chichester, 1979.

    Google Scholar 

  9. A. V. Kiselev and Y. I. Yashin. Gas-Adsorption Chromatography. Plenum, London, 1969.

    Google Scholar 

  10. E. Papirer and H. Balard. In: E. Pefferkorn (ed.), Interfacial Phenomena in Chromatography, Marcel Dekker, New York, 1999.

    Google Scholar 

  11. H. E. Newell, G. Buckton, D. A. Butler, F. Thielmann, and D. R. Williams. The use of inverse phase gas chromatography to study the change of surface energy of amorphous lactose as a function of relative humidity and the processes of collapse and crystallisation. Int. J. Pharm. 217:45–56 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. H. E. Newell, G. Buckton, D. A. Butler, F. Thielmann, and D. R. Williams. The use of inverse gas chromatography to measure the surface energy of crystalline, amorphous and recently milled lactose. Pharm. Res. 18:662–666 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. I. M. Grimsey, J. C. Feeley, and P. York. Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography. J. Pharm. Sci. 91:571–583 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. I. M. Grimsey, J. C. Osborn, S. W. Doughty, P. York, and R. C. Rowe. The application of molecular modelling to the interpretation of inverse gas chromatography data. J. Chromatogr. A 969:49–57 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. M. D. Ticehurst, R. C. Rowe, and P. York. Determination of the surface properties of two batches of salbutamol sulphate by inverse gas chromatography. Int. J. Pharm. 111:241–249 (1994).

    Article  CAS  Google Scholar 

  16. P. York, M. D. Ticehurst, J. C. Osborn, R. J. Roberts, and R. C. Rowe. Characterisation of the surface energetics of milled dl-propranolol hydrochloride using inverse gas chromatography and molecular modelling. Int. J. Pharm. 174:179–186 (1998).

    Article  CAS  Google Scholar 

  17. J. Y. Y. Heng, D. F. Pearse, D. A. Wilson, and D. R. Williams. Characterization of solid state materials using vapor sorption methods. In: A. Zakrzewski and M. Zakrzewski (eds.), Solid State Characterization of Pharmaceuticals, ASSA, Danbury Connecticut, 2006.

    Google Scholar 

  18. G. Buckton. Characterisation of small changes in the physical properties of powders of significance for dry powder inhaler formulations. Adv. Drug Deliv. Rev. 26:17–27 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. F. M. Fowkes. Attractive forces at interfaces. Ind. Eng. Chem. 56:40–52 (1964).

    Article  CAS  Google Scholar 

  20. J. Schultz, L. Lavielle, and C. Martin. The role of the interface in carbon fibre-spoxy composites. J. Adhes. 23:45–60 (1987).

    Article  CAS  Google Scholar 

  21. G. M. Dorris and D. G. Gray. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J. Colloid Interface Sci. 77:353–362 (1980).

    Article  CAS  Google Scholar 

  22. U. Panzer and H. P. Schreiber. On the evaluation of surface interactions by inverse gas chromatography. Macromolecules 25:3631–3633 (1992).

    Article  CAS  Google Scholar 

  23. V. Gutmann. Coordination chemistry of certain transition-metal ions. The role of solvent. Coord. Chem. Rev. 2:239–256 (1966).

    Article  Google Scholar 

  24. F. L. Riddle and F. M. Fowkes. Spectral shifts in acid-base chemistry. 1. van der Waals contribution to acceptor numbers. J. Am. Chem. Soc. 112:3259–3264 (1990).

    Article  CAS  Google Scholar 

  25. J. W. Mullin. Crystallization, 3rd ed. Butterworth-Heinemann, Oxford, 1993.

    Google Scholar 

  26. J. Y. Y. Heng, A. Bismarck, A. F. Lee, K. Wilson, and D. R. Williams. Anisotropic wettability of macroscopic form I paracetamol crystals. Langmuir 22:2760–2769 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. E. M. Ålander, M. S. Uusi-Penttila, and Å. C. Rasmuson. Agglomeration of paracetamol during crystallization in pure and mixed solvents. Ind. Eng. Chem. Res. 43:629–637 (2004).

    Article  Google Scholar 

  28. R. I. Ristic, S. Finnie, D. B. Sheen, and J. N. Sherwood. Macro- and micromorphology of monoclinic paracetamol grown from pure aqueous solution. J. Phys. Chem. B 105:9057–9066 (2001).

    Article  CAS  Google Scholar 

  29. W. C. Duncan-Hewitt, D. L. Mount, and A. Yu. Hardness anisotropy of acetaminophen crystals. Pharm. Res. 11:616–623 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. G. Nichols and C. S. Frampton. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J. Pharm. Sci. 87:684–693 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. I. M. Grimsey, J. C. Feeley, and P. York. Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography. J. Pharm. Sci. 91:571–583 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. M. Ohta and G. Buckton. Determination of the changes in surface energetics of cefditoren pivoxil as a consequence of processing induced disorder and equilibration to different relative humidities. Int. J. Pharm. 269:81–88 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. L. Trowbridge, I. M. Grimsey, and P. York. Influence of milling on the surface properties of acetaminophen. AAPS PharmSci (Suppl.)(1):310 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl R. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heng, J.Y.Y., Thielmann, F. & Williams, D.R. The Effects of Milling on the Surface Properties of Form I Paracetamol Crystals. Pharm Res 23, 1918–1927 (2006). https://doi.org/10.1007/s11095-006-9042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9042-1

Key words

Navigation