Skip to main content

Advertisement

Log in

Application of Drug Nanocrystal Technologies on Oral Drug Delivery of Poorly Soluble Drugs

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The limited solubility and dissolution rate exhibited by poorly soluble drugs is major challenges in the pharmaceutical process. Following oral administration, the poorly soluble drugs generally show a low and erratic bioavailability which may lead to therapeutic failure. Pure drug nanocrystals, generated by “bottom up” or “top down” technologies, facilitate a significant improvement on dissolution behavior of poorly soluble drugs due to their enormous surface area, which in turn lead to substantial improvement in oral absorption. This is the most distinguished achievement of drug nanocrystals among their performances in various administration routes, reflected by the fact that most of the marketed products based on the nanocrystals technology are for oral application. After detailed investigations on various technologies associated with production of drug nanocrystals and their in vitro physicochemical properties, during the last decade more attentions have been paid into their in vivo behaviors. This review mainly describes the in vivo performances of oral drug nanocrystals exhibited in animals related to the pharmacokinetic, efficacy and safety characteristics. The technologies and evaluation associated with the solidification process of the drug nanocrystals suspensions were also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AN:

aqueous nanosuspension

AUC:

area under the blood concentration–time curve

BCS:

biopharmaceutics classification system

CL:

clearance rate

Cmax :

maximum plasma concentration

DDSs:

drug delivery systems

EPAS:

evaporative precipitation into aqueous solution

GIT:

gastrointestinal tract

IVIVC:

in vitroin vivo correlation

MCC:

microcrystalline cellulose

MRT:

mean residence time

NSAIDs:

non-steroidal anti-inflammatory drugs

P-gp:

p-glycoprotein

Tmax :

time to maximum plasma concentration

References

  1. Fasano A. Innovative strategies for the oral delivery of drugs and peptides. Trends Biotechnol. 1998;16(4):152–7.

    Article  PubMed  CAS  Google Scholar 

  2. Colombo P, Sonvico F, Colombo G, Bettini R. Novel platforms for oral drug delivery. Pharm Res. 2009;26(3):601–11.

    Article  PubMed  CAS  Google Scholar 

  3. Dandan L, Heming X, Baocheng T, Kun Y, Hao P, Shilin M, et al. Fabrication of carvedilol nanosuspensions through the anti-Solvent precipitation–ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS PharmSciTech. 2012;13(1):295–304.

    Article  CAS  Google Scholar 

  4. Dressman JB, Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci. 2000;11(S2):73–80.

    Article  Google Scholar 

  5. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;60(2):90–9.

    Article  CAS  Google Scholar 

  6. Lipinski C. Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev. 2002;5(3):82–5.

    Google Scholar 

  7. Cooper ER. Nanoparticles: a personal experience for formulating poorly water soluble drugs. J Control Release. 2010;141(3):300–2.

    Article  PubMed  CAS  Google Scholar 

  8. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm. 2006;62(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  9. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.

    Article  PubMed  CAS  Google Scholar 

  10. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res. 2008;10(5):845–62.

    Article  CAS  Google Scholar 

  11. Reed RG, Czekai DA, Bosch HW, Ryde NP, Ryde T. Small scale mill and methods thereof. United States Patent 2002; No. 6,431,478.

  12. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.

    Article  PubMed  Google Scholar 

  13. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.

    Article  PubMed  CAS  Google Scholar 

  14. Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm. 1989;51(1):9–17.

    Article  CAS  Google Scholar 

  15. Böhm BHL, Müller RH. Lab-scale production unit design for nanosuspensions of sparingly soluble cytotoxic drugs. Pharm Sci Tech Today. 1999;2(8):336–9.

    Article  Google Scholar 

  16. Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1–2):129–39.

    Article  PubMed  CAS  Google Scholar 

  17. Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1–3):151–70.

    Article  PubMed  CAS  Google Scholar 

  18. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20.

    Article  PubMed  CAS  Google Scholar 

  19. Hu J, Johnston KP, Williams RO. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm. 2004;30(3):233–45.

    Article  PubMed  CAS  Google Scholar 

  20. Junghanns JAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–310.

    PubMed  CAS  Google Scholar 

  21. Ghosh S, Chiang P, Wahlstrom JL, Fujiwara H, Selbo JG, Roberds SL. Oral delivery of 1,3-Dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats. Basic Clin Pharmacol Toxicol. 2008;102(5):453–8.

    Article  PubMed  CAS  Google Scholar 

  22. Sigfridsson K, Nordmark A, Theilig S, Lindah A. A formulation comparison between micro- and nanosuspensions: the importance of particle size for absorption of a model compound, following repeated oral administration to rats during early development. Drug Dev Ind Pharm. 2011;37(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  23. Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm. 2004;285(1–2):135–46.

    Article  PubMed  CAS  Google Scholar 

  24. Sigfridsson K, Forssén S, Holländer P, Skantze U, de Verdier J. A formulation comparison, using a solution and different nanosuspensions of a poorly soluble compound. Eur J Pharm Biopharm. 2007;67(2):540–7.

    Article  PubMed  CAS  Google Scholar 

  25. Fakes MG, Vakkalagadda BJ, Qian F, Desikan S, Gandhi RB, Lai C, et al. Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm. 2009;370(1–2):167–74.

    Article  PubMed  CAS  Google Scholar 

  26. Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release. 2006;111(1–2):56–64.

    Article  PubMed  CAS  Google Scholar 

  27. Müller RH, Runge S, Ravelli V, Mehnert W, Thünemann AF, Souto EB. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int J Pharm. 2006;317(1):82–9.

    Article  PubMed  CAS  Google Scholar 

  28. Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125(1):91–7.

    Article  CAS  Google Scholar 

  29. Vogt M, Vertzoni M, Kunath K, Reppas C, Dressman JB. Cogrinding enhances the oral bioavailability of EMD 57033, a poorly water soluble drug, in dogs. Eur J Pharm Biopharm. 2008;68(2):338–45.

    Article  PubMed  CAS  Google Scholar 

  30. Li X, Gu L, Xu Y, Wang Y. Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behavior in rats. Drug Dev Ind Pharm. 2009;35(7):827–33.

    Article  PubMed  CAS  Google Scholar 

  31. Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Tubic Grozdanis M, Lenhardt T, et al. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev. 2007;59(6):419–26.

    Article  PubMed  CAS  Google Scholar 

  32. Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413(1–2):237–44.

    Article  PubMed  CAS  Google Scholar 

  33. Vergote GJ, Vervaet C, Van Driessche I, Hoste S, De Smedt S, Demeester J, et al. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen. Int J Pharm. 2002;240(1–2):79–84.

    Article  PubMed  CAS  Google Scholar 

  34. Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm. 1995;125(2):309–13.

    Article  CAS  Google Scholar 

  35. Langguth P, Hanafy A, Frenzel D, Grenier P, Nhamias A, Ohlig T, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm. 2005;31(3):319–29.

    PubMed  CAS  Google Scholar 

  36. Sigfridsson K, Lundqvist AJ, Strimfors M. Particle size reduction for improvement of oral absorption absorption of the poorly soluble drug UG558 in rats during early development. Drug Dev Ind Pharm. 2009;35(12):1479–86.

    Article  PubMed  CAS  Google Scholar 

  37. Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm. 2011;404(1–2):231–7.

    Article  PubMed  CAS  Google Scholar 

  38. Sarkari M, Brown J, Chen X, Swinnea S, Williams III RO, Johnston KP. Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int J Pharm. 2002;243(1–2):17–31.

    Article  PubMed  CAS  Google Scholar 

  39. Ponchel G, Montisci MJ, Dembri A, Durrer C, Duchêne D. Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract. Eur J Pharm Biopharm. 1997;44(1):25–31.

    Article  CAS  Google Scholar 

  40. Duchêne D, Ponchel G. Bioadhesion of solid oral dosage forms, why and how? Eur J Pharm Biopharm. 1997;44(1):15–23.

    Article  Google Scholar 

  41. Dodou D, Breedveld P, Wieringa PA. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur J Pharm Biopharm. 2005;60(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  42. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556–68.

    Article  PubMed  CAS  Google Scholar 

  43. Kayser O. A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: research and applications. Int J Pharm. 2001;214(1–2):83–5.

    Article  PubMed  CAS  Google Scholar 

  44. Awaad A, Nakamura M, Ishimura K. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomedicine. 2012;8(5):627–36.

    Article  PubMed  CAS  Google Scholar 

  45. Lamprecht A, Koenig P, Ubrich N, Maincent P, Neumann D. Low molecular weight heparin nanoparticles: mucoadhesion and behaviour in Caco-2 cells. Nanotechnology. 2006;17(15):3673–80.

    Article  CAS  Google Scholar 

  46. Bramer SL, Forbes WP. Relative bioavailability and effects of a high fat meal on single dose cilostazol pharmacokinetics. Clin Pharmacokinet. 1999;37 Suppl 2:13–23.

    Article  PubMed  CAS  Google Scholar 

  47. Sauron R, Wilkins M, Jessent V, Dubois A, Maillot C, Weil A. Absence of a food effect with a 145 mg nanoparticle fenofibrate tablet formulation. Int J Clin Pharmacol Ther. 2006;44(2):64–70.

    PubMed  CAS  Google Scholar 

  48. Delie F. Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv Drug Deliv Rev. 1998;34(2–3):221–33.

    Article  PubMed  CAS  Google Scholar 

  49. Grama CN, Ankola DD, Ravi Kumar MNV. Poly(lactide-co-glycolide) nanoparticles for peroral delivery of bioactives. Curr Opin Colloid Interface Sci. 2011;16(3):238–45.

    Article  CAS  Google Scholar 

  50. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838–45.

    Article  PubMed  CAS  Google Scholar 

  51. des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.

    Article  PubMed  CAS  Google Scholar 

  52. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16(10):1550–6.

    Article  PubMed  CAS  Google Scholar 

  53. Burton L, Ying W, Gandhi R, West R, Huang C, Zhou S, et al. Development of a precipitation-resistant solution formulation to increase in vivo exposure of a poorly water-soluble compound. Int J Pharm. 2012;433(1–2):94–101.

    Article  PubMed  CAS  Google Scholar 

  54. Goole J, Lindley DJ, Roth W, Carl SM, Amighi K, Kauffmann JM, et al. The effects of excipients on transporter mediated absorption. Int Pharm. 2010;393(1–2):17–31.

    Article  CAS  Google Scholar 

  55. Huang J, Si L, Jiang L, Fan Z, Qiu J, Li G. Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism. Int J Pharm. 2008;356(1–2):351–3.

    Article  PubMed  CAS  Google Scholar 

  56. Wempe MF, Wright C, Little JL, Lightner JW, Large SE, Caflisch GB, et al. Inhibiting efflux with novel non-ionic surfactants: Rational design based on vitamin E TPGS. Int J Pharm. 2009;3701–2:93–102.

    Article  CAS  Google Scholar 

  57. Andes D. Minireview: in vivo pharmacodynamics of antifungal drugs in treatment of candidiasis. Antimicrob Agents Chemother. 2003;474:1179–786.

    Article  CAS  Google Scholar 

  58. Andes D, Marchillo K, Conklin R, Krishna G, Ezzet F, Cacciapuoti A, et al. Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis. Antimicrob Agents Chemother. 2004;481:137–42.

    Article  CAS  Google Scholar 

  59. Kayser O, Olbrich C, Yardley V, Kiderlen AF, Croft SL. Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm. 2003;2541:73–5.

    Article  CAS  Google Scholar 

  60. Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm. 2006;3121–2:179–86.

    Article  CAS  Google Scholar 

  61. Salzberg M, Pless M, Rochlitz C, Ambrus K, Scigalla P, Herrmann R. A phase I study with oral SU5416 in patients with advanced solid tumors: a drug inducing its clearance. Invest New Drugs. 2006;244:299–304.

    Article  Google Scholar 

  62. Choi YK, Poudel BK, Marasini N, Yang KY, Kim JW, Kim JO, et al. Enhanced solubility and oral bioavailability of itraconazole by combining membrane emulsification and spray drying technique. Int J Pharm. 2012;4341–2:264–71.

    Article  CAS  Google Scholar 

  63. Van Eerdenbrugh B, Vercruysse S, Martens JA, Vermant J, Froyen L, Van Humbeeck J, et al. Microcrystalline cellulose, a useful alternative for sucrose as a matrix former during freeze-drying of drug nanosuspensions—a case study with itraconazole. Eur J Pharm Biopharm. 2008;702:590–6.

    Google Scholar 

  64. Badawi AA, El-Nabarawi MA, El-Setouhy DA, Alsammit SA. Formulation and stability testing of itraconazole crystalline nanoparticles. AAPS PharmSciTech. 2011;123:811–20.

    Article  CAS  Google Scholar 

  65. Lai F, Pini E, Angioni G, Manca ML, Perricci J, Sinico C, et al. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. Eur J Pharm Biopharm. 2011;793:552–8.

    Article  CAS  Google Scholar 

  66. Ain-Ai A, Gupta PK. Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. Int J Pharm. 2008;3511–2:282–8.

    Article  CAS  Google Scholar 

  67. Guo Z, Pereira T, Choi O, Wang Y, Hahn HT. Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem. 2006;166:2800–8.

    Article  CAS  Google Scholar 

  68. Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;3701–2:202–9.

    Article  CAS  Google Scholar 

  69. Juhnke M, Märtin D, John E. Generation of wear during the production of drug nanosuspensions by wet media milling. Eur J Pharm Biopharm. 2012;811:214–22.

    Article  CAS  Google Scholar 

  70. Basa S, Muniyappan T, Karatgi P, Prabhu R, Pillai R. Production and in vitro characterization of solid dosage form incorporating drug nanoparticles. Drug Dev Ind Pharm. 2008;3411:1209–18.

    Article  Google Scholar 

  71. Wang BH, Zhang WB, Zhang W, Mujumdar AS, Huang LX. Progress in drying technology for nanomaterials. Dry Technol. 2005;231–2:7–32.

    Article  CAS  Google Scholar 

  72. Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008;2510:2302–8.

    Article  CAS  Google Scholar 

  73. Kim S, Lee J. Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions. Int J Pharm. 2010;3971–2:218–24.

    Article  CAS  Google Scholar 

  74. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;636:427–40.

    Article  CAS  Google Scholar 

  75. Saez A, Guzmán M, Molpeceres J, Aberturas MR. Freeze drying of polycaprolactone and poly d, l-lactic-glycolic nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;503:379–87.

    Article  Google Scholar 

  76. Heng D, Ogawa K, Cutler DJ, Chan H, Raper JA, Ye L, et al. Pure drug nanoparticles in tablets: what are the dissolution limitations? J Nanopart Res. 2010;125:1743–54.

    Article  CAS  Google Scholar 

  77. de Waard H, Hinrichs WL, Frijlink HW. A novel bottom–up process to produce drug nanocrystals: controlled crystallization during freeze-drying. J Control Release. 2008;1282:179–83.

    Article  CAS  Google Scholar 

  78. Lee J, Cheng Y. Critical freezing rate in freeze drying nanocrystal dispersions. J Control Release. 2006;1111–2:185–92.

    Article  CAS  Google Scholar 

  79. Zhang D, Tan T, Gao L, Zhao W, Wang P. Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev Ind Pharm. 2007;335:569–75.

    Article  CAS  Google Scholar 

  80. Gao L, Zhang D, Chen M, Zheng T, Wang S. Preparation and characterization of an oridonin nanosuspension for solubility and dissolution velocity enhancement. Drug Dev Ind Pharm. 2007;3312:1332–9.

    Article  CAS  Google Scholar 

  81. Gao L, Zhang D, Chen M, Duan C, Dai W, Jia L, et al. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions. Int J Pharm. 2008;3551–2:321–7.

    Article  CAS  Google Scholar 

  82. Kumar MP, Rao YM, Apte S. Formulation of nanosuspensions of albendazole for oral administration. Curr Nanosci. 2008;41:53–8.

    Google Scholar 

  83. Peters K, Leitzke S, Diederichs JE, Borner K, Hahn H, Müller RH, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother. 2000;451:77–83.

    Article  Google Scholar 

  84. Van Eerdenbrugh B, Froyen L, Martens JA, Blaton N, Augustijns P, Brewster M, et al. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int J Pharm. 2007;3381–2:198–206.

    Article  CAS  Google Scholar 

  85. Vogt M, Vertzoni M, Kunath K, Reppas C, Dressman JB. Cogrinding enhances the oral bioavailability of EMD 57033, a poorly water soluble drug, in dogs. Eur J Pharm Biopharm. 2008;682:338–45.

    Article  CAS  Google Scholar 

  86. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;2991–2:167–77.

    Article  CAS  Google Scholar 

  87. Dolenc A, Kristl J, Baumgartner S, Planinsek O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm. 2009;3761–2:204–12.

    Article  CAS  Google Scholar 

  88. Möschwitzer J, Müller RH. Spray coated pellets as carrier system for mucoadhesive drug nanocrystals. Eur J Pharm Biopharm. 2006;623:282–7.

    Article  CAS  Google Scholar 

  89. Vergote GJ, Vervaet C, Van Driessche I, Hoste S, De Smedt S, Demeester J, et al. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. Int J Pharm. 2001;2191–2:81–7.

    Article  Google Scholar 

  90. Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm. 2011;4201:141–6.

    Article  CAS  Google Scholar 

  91. Lee J. Drug nano- and microparticles processed into solid dosage forms: physical properties. J Pharm Sci. 2003;9210:2057–68.

    Article  CAS  Google Scholar 

  92. Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interface Sci. 2003;2652:296–303.

    Article  CAS  Google Scholar 

  93. Sebhatu T, Angberg M, Ahlneck C. Assessment of the degree of disorder in crystalline solids. Int J Pharm. 1994;1012:237–47.

    Google Scholar 

  94. Aguiar AJ, Zelmer JE, Kinkel AW. Deaggregation behavior of a relatively insoluble substituted benzoic acid and its sodium salt. J Pharm Sci. 1967;5610:1243–52.

    Article  Google Scholar 

  95. Sun C, Grant DJ. Effects of initial particle size on the tableting properties of l-lysine monohydrochloride dihydrate powder. Int J Pharm. 2001;2151–2:221–8.

    Article  Google Scholar 

  96. Busignies V, Leclerc B, Porion P, Evesque P, Couarraze G, Tchoreloff P. Compaction behaviour and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients. Eur J Pharm Biopharm. 2006;641:66–74.

    Article  CAS  Google Scholar 

  97. Takagi H, Kajiyama A, Yanagisawa M. Rapidly disintegrable pharmaceutical composition. United States Patent 2007; 7 189 415.

  98. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;3641:64–75.

    Article  CAS  Google Scholar 

  99. Van Eerdenbrugh B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, Van den Mooter G. Drying of crystalline drug nanosuspensions—the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur J Pharm Sci. 2008;351–2:127–35.

    Article  CAS  Google Scholar 

  100. Kalaria DR, Sharma G, Beniwal V, Ravi Kumar MN. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res. 2009;263:492–501.

    Article  CAS  Google Scholar 

  101. Kipp JE. The role of solid nanoparticle technology in parenteral delivery of poorly water soluble drugs. Int J Pharm. 2004;2841–2:109–22.

    Article  CAS  Google Scholar 

  102. Shubar HM, Lachenmaier S, Heimesaat MM, Lohman U, Mauludin R, Muller RH, et al. SDS-coated atovaquone nanosuspensions show improved therapeutic efcacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood–brain barriers. J Drug Target. 2011;192:114–24.

    Article  CAS  Google Scholar 

  103. Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization method. J Pharm Pharmacol. 2010;6211:1569–79.

    Article  CAS  Google Scholar 

  104. Lai F, Sinico C, Ennas G, Marongiu F, Marongiu G, Fadda AM. Diclofenac nanosuspensions: influence of preparation procedure and crystal form on drug dissolution behavior. Int J Pharm. 2009;3731–2:124–32.

    Article  CAS  Google Scholar 

  105. Okumu A, DiMaso M, Löbenberg R. Dynamic dissolution testing to establish in vitro/in vivo correlations for montelukast sodium, a poorly soluble drug. Pharm Res. 2008;2512:2778–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was partially supported by Scientific Foundation of the First Affiliated Hospital of General Hospital of PLA, the project number is QN201105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Gao.

Additional information

Lei Gao and Guiyang Liu contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Liu, G., Ma, J. et al. Application of Drug Nanocrystal Technologies on Oral Drug Delivery of Poorly Soluble Drugs. Pharm Res 30, 307–324 (2013). https://doi.org/10.1007/s11095-012-0889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0889-z

KEY WORDS

Navigation