Skip to main content

Advertisement

Log in

Oral Delivery of Glucagon Like Peptide-1 by a Recombinant Lactococcus lactis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a live oral delivery system of Glucagon like peptide-1 (GLP-1), for the treatment of Type-2 Diabetes.

Methods

LL-pUBGLP-1, a recombinant Lactococcus lactis (L. lactis)) transformed with a plasmid vector encoding GLP-1 cDNA was constructed and was used as a delivery system. Secretion of rGLP-1 from LL-pUBGLP-1 was characterized by ELISA. The bioactivity of the rGLP-1 was examined for its insulinotropic activity on HIT-T15 cells. Transport of rGLP-1 across MDCK cell monolayer when delivered by LL-pUBGLP-1 was studied. The therapeutic effect of LL-pUBGLP-1 after oral administration was investigated in ZDF rats.

Results

DNA sequencing and ELISA confirmed the successful construction of the LL-pUBGLP-1 and secretion of the active form of rGLP-1. In vitro insulinotropic studies demonstrated that LL-pUBGLP-1 could significantly (p < 0.05) stimulate HIT-T15 cells to secrete insulin as compared to the controls. When delivered by LL-pUBGLP-1, the GLP-1 transport rate across the MDCK cell monolayer was increased by eight times (p < 0.01) as compared to the free solution form. Oral administration of LL-pUBGLP-1 in ZDF rats resulted in a significant decrease (10–20%, p < 0.05) in blood glucose levels during 2–11 h post dosing and a significant increase in insulin AUC0-11h (2.5 times, p < 0.01) as compared to the free solution.

Conclusion

The present study demonstrates that L. lactis when genetically modified with a recombinant plasmid can be used for the oral delivery of GLP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GLP-1:

Glucagon like peptide-1

L. lactis :

Lactococcus lactis sub sp. lactis

LL-pUB1000:

Lactococcus lactis transformed with pUB1000 plasmid

LL-pUBGLP-1:

Lactococcus lactis transformed with pUBGLP-1 plasmid

M17G:

M17 growth media supplemented with 5% glucose

pUB1000:

Expression host plasmid vector

pUBGLP-1:

Recombinant plasmid with GLP-1 c-DNA

rGLP-1:

recombinant GLP-1 secreted extracellularly by LL-pUBGLP-1

T2DM:

Type 2 Diabetes mellitus

References

  1. Perfetti R, Brown TA, Velikina R, Busselen S. Control of glucose homeostasis by incretin hormones. Diabetes Technol Ther. 1999;1(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  2. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Vilsboll T. On the role of the incretin hormones GIP and GLP-1 in the pathogenesis of Type 2 diabetes mellitus. Dan Med Bull. 2004;51(4):364–70.

    CAS  PubMed  Google Scholar 

  4. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993;138(1):159–66.

    Article  CAS  PubMed  Google Scholar 

  5. Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes. 2003;52(2):380–6.

    Article  CAS  PubMed  Google Scholar 

  6. Perry T, Greig NH. The glucagon-like peptides: a double-edged therapeutic sword? Trends Pharmacol Sci. 2003;24(7):377–83.

    Article  CAS  PubMed  Google Scholar 

  7. Mest HJ, Mentlein R. Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia. 2005;48(4):616–20.

    Article  CAS  PubMed  Google Scholar 

  8. Mentlein R. Dipeptidyl-peptidase IV, (CD26)–role in the inactivation of regulatory peptides. Regul Pept. 1999;85(1):9–24.

    Article  CAS  PubMed  Google Scholar 

  9. Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141(1):150–6.

    Article  CAS  PubMed  Google Scholar 

  10. Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case–control study. JAMA Intern Med. 2013;173(7):534–9.

    Article  CAS  PubMed  Google Scholar 

  11. [01/10/2014]; Available from: http://www.fda.gov/Drugs/DrugSafety/ucm343187.htm.

  12. Bond A. Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. Proc (Bayl Univ Med Cent). 2006;19(3):281–4.

    Google Scholar 

  13. Moriya H, Moriwaki C, Akimoto S, Yamaguchi K, Iwadare M. Studies on the passage of alpha-chymotrypsin across the intestine. Chem Pharm Bull (Tokyo). 1967;15(11):1662–8.

    Article  CAS  Google Scholar 

  14. Shao J, Kaushal G. Normal flora: living vehicles for non-invasive protein drug delivery. Int J Pharm. 2004;286(1–2):117–24.

    Article  CAS  PubMed  Google Scholar 

  15. Antolin J, Ciguenza R, Saluena I, Vazquez E, Hernandez J, Espinos D. Liver abscess caused by Lactococcus lactis cremoris: a new pathogen. Scand J Infect Dis. 2004;36(6–7):490–1.

    Article  CAS  PubMed  Google Scholar 

  16. Shanahan F. Immunology. Therapeutic manipulation of gut flora. Science. 2000;289(5483):1311–2.

    Article  CAS  PubMed  Google Scholar 

  17. Buchelli-Ramirez HL, Alvarez-Alvarez C, Rojo-Alba S, Garcia-Clemente M, Cimadevilla-Suarez R, Pando-Sandoval A, et al. Necrotising pneumonia caused by Lactococcus lactis cremoris. Int J Tuberc Lung Dis. 2013;17(4):565–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kaushal G, Trombetta L, Ochs RS, Shao J. Delivery of TEM beta-lactamase by gene-transformed Lactococcus lactis subsp. lactis through cervical cell monolayer. Int J Pharm. 2006;313(1–2):29–35.

    Article  CAS  PubMed  Google Scholar 

  19. Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A. Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol. 1997;179(9):3068–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Savijoki K, Kahala M, Palva A. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene. 1997;186(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  21. Le Loir Y, Nouaille S, Commissaire J, Bretigny L, Gruss A, Langella P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol. 2001;67(9):4119–27.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Brashears MM, Galyean ML, Loneragan GH, Mann JE, Killinger-Mann K. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J Food Prot. 2003;66(5):748–54.

    CAS  PubMed  Google Scholar 

  23. Brashears MM, Jaroni D, Trimble J. Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J Food Prot. 2003;66(3):355–63.

    CAS  PubMed  Google Scholar 

  24. Tannock GW. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol. 1997;15(7):270–4.

    Article  CAS  PubMed  Google Scholar 

  25. Gilbert C, Atlan D, Blanc B, Portailer R, Germond JE, Lapierre L, et al. A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbruekii subsp. bulgaricus. J Bacteriol. 1996;178(11):3059–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Grangette C, Muller-Alouf H, Goudercourt D, Geoffroy MC, Turneer M, Mercenier A. Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum. Infect Immun. 2001;69(3):1547–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Scheppler L, Vogel M, Marti P, Muller L, Miescher SM, Stadler BM. Intranasal immunisation using recombinant Lactobacillus johnsonii as a new strategy to prevent allergic disease. Vaccine. 2005;23(9):1126–34.

    Article  CAS  PubMed  Google Scholar 

  28. Scheppler L, Vogel M, Zuercher AW, Zuercher M, Germond JE, Miescher SM, et al. Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine. 2002;20(23–24):2913–20.

    Article  CAS  PubMed  Google Scholar 

  29. Shaw DM, Gaerthe B, Leer RJ, Van Der Stap JG, Smittenaar C, Heijne Den Bak-Glashouwer M, et al. Engineering the microflora to vaccinate the mucosa: serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing lactobacilli. Immunology. 2000;100(4):510–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zegers ND, Kluter E, van Der Stap H, van Dura E, van Dalen P, Shaw M, et al. Expression of the protective antigen of Bacillus anthracis by Lactobacillus casei: towards the development of an oral vaccine against anthrax. J Appl Microbiol. 1999;87(2):309–14.

    Article  CAS  PubMed  Google Scholar 

  31. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003;21(7):785–9.

    Article  CAS  PubMed  Google Scholar 

  32. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289(5483):1352–5.

    Article  CAS  PubMed  Google Scholar 

  33. Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, et al. Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun. 1998;66(7):3183–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Steidler L, Wells JM, Raeymaekers A, Vandekerckhove J, Fiers W, Remaut E. Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1995;61(4):1627–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Avall-Jaaskelainen S, Palva A. Secretion of biologically active porcine interleukin-2 by Lactococcus lactis. Vet Microbiol. 2006;115(1–3):278–83.

    Article  PubMed  Google Scholar 

  36. Fernandez A, Horn N, Wegmann U, Nicoletti C, Gasson MJ, Narbad A. Enhanced secretion of biologically active murine interleukin-12 by Lactococcus lactis. Appl Environ Microbiol. 2009;75(3):869–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Klijn N, Weerkamp AH, de Vos WM. Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol. 1995;61(7):2771–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kaushal G, Shao J. Oral delivery of beta-lactamase by Lactococcus lactis subsp. lactis transformed with Plasmid ss80. Int J Pharm. 2006;312(1–2):90–5.

    Article  CAS  PubMed  Google Scholar 

  39. Jakubovics NS, Stromberg N, van Dolleweerd CJ, Kelly CG, Jenkinson HF. Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol. 2005;55(5):1591–605.

    Article  CAS  PubMed  Google Scholar 

  40. Wells JM, Wilson PW, Le Page RW. Improved cloning vectors and transformation procedure for Lactococcus lactis. J Appl Bacteriol. 1993;74(6):629–36.

    Article  CAS  PubMed  Google Scholar 

  41. Mukherjee T, Squillantea E, Gillespieb M, Shao J. Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Drug Deliv. 2004;11(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  42. Cogburn JN, Donovan MG, Schasteen CS. A model of human small intestinal absorptive cells. 1. Transport barrier. Pharm Res. 1991;8(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  43. Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol. 2008;6(5):349–62.

    Article  CAS  PubMed  Google Scholar 

  44. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, et al. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 1999;88(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  45. Prego C, Torres D, Alonso MJ. The potential of chitosan for the oral administration of peptides. Expert Opin Drug Deliv. 2005;2(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  46. Kompella UB, Lee VH. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev. 2001;46(1–3):211–45.

    Article  CAS  PubMed  Google Scholar 

  47. Gomez-Orellana I. Strategies to improve oral drug bioavailability. Expert Opin Drug Deliv. 2005;2(3):419–33.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We would like to thank Dr. H. F. Jenkinson and Dr. J. Brittan (Department of Oral and Dental Science, University of Bristol, Bristol, UK) for providing us with the L. lactis strain with pUB1000 plasmid and also for their valuable assistance. The animal work was supported by the Seed grant/Venture Capital Fund from St. John’s University, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P., Khatri, P., Billack, B. et al. Oral Delivery of Glucagon Like Peptide-1 by a Recombinant Lactococcus lactis . Pharm Res 31, 3404–3414 (2014). https://doi.org/10.1007/s11095-014-1430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1430-3

KEY WORDS

Navigation