Skip to main content

Advertisement

Log in

Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Approaches for the synthesis of biomaterials to facilitate the delivery of “biologics” is a major area of research in cancer therapy. Here we designed and characterized a hyaluronic acid (HA) based self-assembling nanoparticles that can target CD44 receptors overexpressed on multidrug resistance (MDR) ovarian cancer. The nanoparticle system is composed of HA-poly(ethyleneimine)/HA-poly(ethylene glycol) (HA-PEI/HA-PEG) designed to deliver MDR1 siRNA for the treatment of MDR in an ovarian cancer model.

Methods

HA-PEI/HA-PEG nanoparticles were synthesized and characterized, then the cellular uptake and knockdown efficiency of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles was further determined. A human xenograft MDR ovarian cancer model was established to evaluate the effects of the combination of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles and paclitaxel on MDR tumor growth.

Results

Our results demonstrated that HA-PEI/HA-PEG nanoparticles successfully targeted CD44 and delivered MDR1 siRNA into OVCAR8TR (established paclitaxel resistant) tumors. Additionally, HA-PEI/HA-PEG nanoparticles loaded with MDR1 siRNA efficiently down-regulated the expression of MDR1 and P-glycoprotein (Pgp), inhibited the functional activity of Pgp, and subsequently increased cell sensitivity to paclitaxel. HA-PEI/HA-PEG/MDR1 siRNA nanoparticle therapy followed by paclitaxel treatment inhibited tumor growth in MDR ovarian cancer mouse models.

Conclusions

These findings suggest that this CD44 targeted HA-PEI/HA-PEG nanoparticle platform may be a clinicaly relevant gene delivery system for systemic siRNA-based anticancer therapeutics for the treatment of MDR cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

CD44:

Cluster of differentiation 44

HA:

Hyaluronic acid

HA-PEI:

A-poly(ethyleneimine)

HA-PEG:

HA-poly(ethylene glycol)

IF:

Immunofluorescence

MDR:

Multidrug resistance

MDR1 :

Multidrug resistance gene 1

MTT:

Methyl thiazolyl tetrazorium

RNAi:

RNA interference

siRNA:

Small interfering RNA

TEM:

Transmission electron micrographs

References

  1. Petersen LK, Narasimhan B. Combinatorial design of biomaterials for drug delivery: Opportunities and challenges. Expert Opin Drug deliv. 2008;5(8):837–46.

    Article  CAS  PubMed  Google Scholar 

  2. Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev. 2013;65(13–14):1784–802.

    Article  CAS  PubMed  Google Scholar 

  3. Abeylath SC, Ganta S, Iyer AK, Amiji M. Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc Chem Res. 2011;44(10):1009–17.

    Article  CAS  PubMed  Google Scholar 

  4. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol. 1996;74(2):A1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Yadav AK, Mishra P, Jain S, Mishra AK, Agrawal GP. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target. 2008;16(6):464–78.

    Article  CAS  PubMed  Google Scholar 

  6. Ganesh S, Iyer AK, Weiler J, Morrissey DV, Amiji MM. Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Mol Ther Nucleic acids. 2013;2:e110.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34(13):3489–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ganesh S, Iyer AK, Gattacceca F, Morrissey DV, Amiji MM. In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. J Controll Release Off J Controll Release Soc. 2013;172(3):699–706.

    Article  CAS  Google Scholar 

  9. Vangara KK, Liu JL, Palakurthi S. Hyaluronic acid-decorated PLGA-PEG nanoparticles for targeted delivery of SN-38 to ovarian cancer. Anticancer Res. 2013;33(6):2425–34.

    CAS  PubMed  Google Scholar 

  10. Cohen K, Emmanuel R, Kisin-Finfer E, Shabat D, Peer D. Modulation of drug resistance in ovarian adenocarcinoma using chemotherapy entrapped in hyaluronan-grafted nanoparticle clusters. ACS Nano. 2014;8(3):2183–95.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279(11):2047–59.

    Article  CAS  PubMed  Google Scholar 

  12. Chen H, Hao J, Wang L, Li Y. Coexpression of invasive markers (uPA, CD44) and multiple drug-resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer. 2009;101(3):432–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clin Cancer Res. 2013;19(22):6193–204.

    Article  CAS  PubMed  Google Scholar 

  14. Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: Current clinical perspectives and future potential. Clin Cancer Res. 2013;19(5):961–8.

    Article  CAS  PubMed  Google Scholar 

  15. Bast Jr RC, Hennessy B, Mills GB. The biology of ovarian cancer: New opportunities for translation. Nat Rev Cancer. 2009;9(6):415–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010;596:47–76.

    Article  CAS  PubMed  Google Scholar 

  17. Vergara D, Tinelli A, Iannone A, Maffia M. The impact of proteomics in the understanding of the molecular basis of Paclitaxel-resistance in ovarian tumors. Curr Cancer Drug Targets. 2012;12(8):987–97.

    Article  CAS  PubMed  Google Scholar 

  18. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  19. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  20. Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749–57.

    Article  CAS  PubMed  Google Scholar 

  21. Duan Z, Choy E, Hornicek FJ. NSC23925, identified in a high-throughput cell-based screen, reverses multidrug resistance. PLoS ONE. 2009;4(10):e7415.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zajchowski DA, Karlan BY, Shawver LK. Treatment-related protein biomarker expression differs between primary and recurrent ovarian carcinomas. Mol Cancer Ther. 2012;11(2):492–502.

    Article  CAS  PubMed  Google Scholar 

  23. Donmez Y, Gunduz U. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells. Biomed Pharmacother Biomed Pharmacother. 2011;65:85–9.

    Article  Google Scholar 

  24. Lage H. MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets. 2006;7(7):813–21.

    Article  CAS  PubMed  Google Scholar 

  25. Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 2003;63(7):1515–9.

    CAS  PubMed  Google Scholar 

  26. Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther. 2004;3(7):833–8.

    CAS  PubMed  Google Scholar 

  27. Miele E, Spinelli GP, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: Challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637–57.

    PubMed Central  PubMed  Google Scholar 

  28. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–77.

    Article  CAS  PubMed  Google Scholar 

  29. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: Challenges and future directions. Nat Rev Cancer. 2011;11(1):59–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Resnier P, Montier T, Mathieu V, Benoit JP, Passirani C. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials. 2013;34(27):6429–43.

    Article  CAS  PubMed  Google Scholar 

  31. Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33(29):7138–50.

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Tao X, Zhang Y, Wei D, Ren Y. Reversion of multidrug resistance by tumor targeted delivery of antisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles. Biomaterials. 2010;31(15):4426–33.

    Article  CAS  PubMed  Google Scholar 

  33. Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano. 2011;5(12):9788–98.

    Article  CAS  PubMed  Google Scholar 

  34. Conde J, de la Fuente JM, Baptista PV. Nanomaterials for reversion of multidrug resistance in cancer: A new hope for an old idea. Front Pharmacol. 2013;4:134.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7(2):994–1005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lamendola DE, Duan Z, Yusuf RZ, Seiden MV. Molecular description of evolving paclitaxel resistance in the SKOV-3 human ovarian carcinoma cell line. Cancer Res. 2003;63(9):2200–5.

    CAS  PubMed  Google Scholar 

  37. Duan Z, Zhang J, Choy E, Harmon D, Liu X, Nielsen P. Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation. Clin Cancer Res. 2012;18(17):4580–8.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang G, Park K, Kim J, Kim KS, Hahn SK. Target specific intracellular delivery of siRNA/PEI-HA complex by receptor mediated endocytosis. Mol Pharm. 2009;6(3):727–37.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang G, Park K, Kim J, Kim KS, Oh EJ, Kang H. Hyaluronic acid-polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers. 2008;89(7):635–42.

    Article  CAS  PubMed  Google Scholar 

  40. Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res. 2000;17(5):521–5.

    Article  CAS  PubMed  Google Scholar 

  41. Choi KY, Yoon HY, Kim JH, Bae SM, Park RW, Kang YM. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano. 2011;5(11):8591–9.

    Article  CAS  PubMed  Google Scholar 

  42. Shen Y, Wang B, Lu Y, Ouahab A, Li Q, Tu J. A novel tumor-targeted delivery system with hydrophobized hyaluronic acid-spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery. Int J Pharm. 2011;414(1–2):233–43.

    Article  CAS  PubMed  Google Scholar 

  43. Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Controll Release Off J Controll Release Soc. 1999;60(2–3):149–60.

    Article  CAS  Google Scholar 

  44. Qiao C, Zhang K, Jin H, Miao L, Shi C, Liu X. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int J Nanomedicine. 2013;8:2985–95.

    PubMed Central  PubMed  Google Scholar 

  45. Song H, Wang G, He B, Li L, Li C, Lai Y. Cationic lipid-coated PEI/DNA polyplexes with improved efficiency and reduced cytotoxicity for gene delivery into mesenchymal stem cells. Int J Nanomedicine. 2012;7:4637–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006;58(4):467–86.

    Article  CAS  PubMed  Google Scholar 

  47. Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32(7):1880–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ozben T. Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett. 2006;580(12):2903–9.

    Article  CAS  PubMed  Google Scholar 

  49. Materna V, Pleger J, Hoffmann U, Lage H. RNA expression of MDR1/P-glycoprotein, DNA-topoisomerase I, and MRP2 in ovarian carcinoma patients: correlation with chemotherapeutic response. Gynecol Oncol. 2004;94(1):152–60.

    Article  CAS  PubMed  Google Scholar 

  50. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–25):3477–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

We thank Dr. Meghna Talekar for measurement of the particle size and surface charge. Dr. Yang is supported by Scholarship from China Scholarship Council. This study is supported by the NIH/NCI, Cancer Nanotechnology Platform Partnership (CNPP) grants U01- CA151452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Duan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22 kb)

ESM 2

(PPTX 1544 kb)

ESM 3

(PPTX 67 kb)

ESM 4

(PPTX 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Iyer, A.K., Singh, A. et al. Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer. Pharm Res 32, 2097–2109 (2015). https://doi.org/10.1007/s11095-014-1602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1602-1

Key Words

Navigation