Skip to main content

Advertisement

Log in

Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS)

  • Perspective
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Early prediction of clearance mechanisms allows for the rapid progression of drug discovery and development programs, and facilitates risk assessment of the pharmacokinetic variability associated with drug interactions and pharmacogenomics. Here we propose a scientific framework – Extended Clearance Classification System (ECCS) – which can be used to predict the predominant clearance mechanism (rate-determining process) based on physicochemical properties and passive membrane permeability. Compounds are classified as: Class 1A – metabolism as primary systemic clearance mechanism (high permeability acids/zwitterions with molecular weight (MW) ≤400 Da), Class 1B – transporter-mediated hepatic uptake as primary systemic clearance mechanism (high permeability acids/zwitterions with MW >400 Da), Class 2 – metabolism as primary clearance mechanism (high permeability bases/neutrals), Class 3A –renal clearance (low permeability acids/zwitterions with MW ≤400 Da), Class 3B – transporter mediated hepatic uptake or renal clearance (low permeability acids/zwitterions with MW >400 Da), and Class 4 – renal clearance (low permeability bases/neutrals). The performance of the ECCS framework was validated using 307 compounds with single clearance mechanism contributing to ≥70% of systemic clearance. The apparent permeability across clonal cell line of Madin − Darby canine kidney cells, selected for low endogenous efflux transporter expression, with a cut-off of 5 × 10−6 cm/s was used for permeability classification, and the ionization (at pH7) was assigned based on calculated pKa. The proposed scheme correctly predicted the rate-determining clearance mechanism to be either metabolism, hepatic uptake or renal for ~92% of total compounds. We discuss the general characteristics of each ECCS class, as well as compare and contrast the framework with the biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS). Collectively, the ECCS framework is valuable in early prediction of clearance mechanism and can aid in choosing the right preclinical tool kit and strategy for optimizing drug exposure and evaluating clinical risk of pharmacokinetic variability caused by drug interactions and pharmacogenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arrowsmith J. Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov. 2011;10:328–9.

    Article  CAS  PubMed  Google Scholar 

  2. Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today. 2012;17:419–24.

    Article  CAS  PubMed  Google Scholar 

  3. Roffey SJ, Obach RS, Gedge JI, Smith DA. What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metab Rev. 2007;39:17–43.

    Article  CAS  PubMed  Google Scholar 

  4. Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispose Biol Fate Chem. 2013;41:1975–93.

    Article  CAS  Google Scholar 

  5. Barton HA, Lai Y, Goosen TC, Jones HM, El-Kattan AF, Gosset JR, et al. Model-based approaches to predict drug-drug interactions associated with hepatic uptake transporters: preclinical, clinical and beyond. Expert Opin Drug Metab Toxicol. 2013;9:459–72.

    Article  CAS  PubMed  Google Scholar 

  6. Elsby R, Hilgendorf C, Fenner K. Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it’s not just about OATP1B1. Clin Pharmacol Ther. 2012;92:584–98.

    Article  CAS  PubMed  Google Scholar 

  7. Lai Y, Varma M, Feng B, Stephens JC, Kimoto E, El-Kattan A, et al. Impact of drug transporter pharmacogenomics on pharmacokinetic and pharmacodynamic variability - considerations for drug development. Expert Opin Drug Metab Toxicol. 2012;8:723–43.

    Article  CAS  PubMed  Google Scholar 

  8. Pang KS, Maeng HJ, Fan J. Interplay of transporters and enzymes in drug and metabolite processing. Mol Pharm. 2009;6:1734–55.

    Article  CAS  PubMed  Google Scholar 

  9. Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci. 2006;27:425–46.

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Pang KS. The roles of transporters and enzymes in hepatic drug processing. Drug Metab Dispose Biol Fate Chem. 2005;33:1–9.

    Article  CAS  Google Scholar 

  11. Li R, Barton HA, Varma MV. Prediction of pharmacokinetics and drug-drug interactions when hepatic transporters are involved. Clin Pharmacokinet. 2014;53:659–78.

    Article  PubMed  CAS  Google Scholar 

  12. Maeda K, Ikeda Y, Fujita T, Yoshida K, Azuma Y, Haruyama Y, et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther. 2011;90:575–81.

    Article  CAS  PubMed  Google Scholar 

  13. Pang KS, Rowland M. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm. 1977;5:625–53.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida K, Maeda K, Sugiyama Y. Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug-drug interactions and genetic polymorphisms. Annu Rev Pharmacol Toxicol. 2013;53:581–612.

    Article  CAS  PubMed  Google Scholar 

  15. Yamazaki M, Suzuki H, Sugiyama Y. Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm Res. 1996;13:497–513.

    Article  CAS  PubMed  Google Scholar 

  16. Sirianni GL, Pang KS. Organ clearance concepts: new perspectives on old principles. J Pharmacokinet Biopharm. 1997;25:449–70.

    Article  CAS  PubMed  Google Scholar 

  17. Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112:71–105.

    Article  CAS  PubMed  Google Scholar 

  18. Camenisch G, Umehara K. Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions. Biopharm Drug Dispos. 2012;33:179–94.

    Article  CAS  PubMed  Google Scholar 

  19. Varma MV, Lin J, Bi YA, Rotter CJ, Fahmi OA, Lam JL, et al. Quantitative prediction of repaglinide-rifampicin complex drug interactions using dynamic and static mechanistic models: delineating differential CYP3A4 induction and OATP1B1 inhibition potential of rifampicin. Drug Metab Dispose Biol Fate Chem. 2013;41:966–74.

    Article  CAS  Google Scholar 

  20. Camenisch G, Riede J, Kunze A, Huwyler J, Poller B, Umehara K. The extended clearance model and its use for the interpretation of hepatobiliary elimination data. ADMET DMPK. 2015;3:1–14.

    Article  Google Scholar 

  21. De Buck SS, Sinha VK, Fenu LA, Nijsen MJ, Mackie CE, Gilissen RA. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metab Dispose Biol Fate Chem. 2007;35:1766–80.

    Article  CAS  Google Scholar 

  22. Jones HM, Gardner IB, Collard WT, Stanley PJ, Oxley P, Hosea NA, et al. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2011;50:331–47.

    Article  CAS  PubMed  Google Scholar 

  23. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, Macintyre F, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283:46–58.

    CAS  PubMed  Google Scholar 

  24. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32:1201–8.

    Article  CAS  PubMed  Google Scholar 

  25. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  PubMed  Google Scholar 

  26. Shugarts S, Bene LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26:2039–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34:45–78.

    Article  CAS  PubMed  Google Scholar 

  28. Fenner KS, Jones HM, Ullah M, Kempshall S, Dickins M, Lai Y, et al. The evolution of the OATP hepatic uptake transport protein family in DMPK sciences: from obscure liver transporters to key determinants of hepatobiliary clearance. Xenobiotica. 2012;42:28–45.

    Article  CAS  PubMed  Google Scholar 

  29. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158:693–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Shimizu K, Takashima T, Yamane T, Sasaki M, Kageyama H, Hashizume Y, et al. Whole-body distribution and radiation dosimetry of [11C]telmisartan as a biomarker for hepatic organic anion transporting polypeptide (OATP) 1B3. Nucl Med Biol. 2012;39:847–53.

    Article  CAS  PubMed  Google Scholar 

  31. Bergman E, Forsell P, Tevell A, Persson EM, Hedeland M, Bondesson U, et al. Biliary secretion of rosuvastatin and bile acids in humans during the absorption phase. Eur J Pharm Sci. 2006;29:205–14.

    Article  CAS  PubMed  Google Scholar 

  32. Yamazaki M, Kobayashi K, Sugiyama Y. Primary active transport of pravastatin across the liver canalicular membrane in normal and mutant Eisai hyperbilirubinemic rats. Biopharm Drug Dispos. 1996;17:607–21.

    Article  CAS  PubMed  Google Scholar 

  33. Varma MV, Lai Y, Feng B, Litchfield J, Goosen TC, Bergman A. Physiologically based modeling of pravastatin transporter-mediated hepatobiliary disposition and drug-drug interactions. Pharm Res. 2012.

  34. Watanabe T, Kusuhara H, Maeda K, Shitara Y, Sugiyama Y. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther. 2009;328:652–62.

    Article  CAS  PubMed  Google Scholar 

  35. Lau Y, Huang Y, Frassetto L, Benet L. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther. 2006;81:194–204.

    Article  PubMed  CAS  Google Scholar 

  36. Varma MV, Scialis RJ, Lin J, Bi YA, Rotter CJ, Goosen TC, et al. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. AAPS J. 2014;16:736–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zheng H, Huang Y, Frassetto L, Benet L. Elucidating rifampin’s inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite. Clin Pharmacol Ther. 2008;85:78–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Kalliokoski A, Backman JT, Kurkinen KJ, Neuvonen PJ, Niemi M. Effects of gemfibrozil and atorvastatin on the pharmacokinetics of repaglinide in relation to SLCO1B1 polymorphism. Clin Pharmacol Ther. 2008;84:488–96.

    Article  CAS  PubMed  Google Scholar 

  39. Varma MV, Lai Y, Kimoto E, Goosen TC, El-Kattan AF, Kumar V. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide. Pharm Res. 2013;30:1188–99.

    Article  CAS  PubMed  Google Scholar 

  40. Prueksaritanont T, Chu X, Evers R, Klopfer S, Caro L, Kothare P, Dempsey C, Rasmussen S, Houle R, Chan G. Pitavastatin is a more sensitive and selective OATP1B clinical probe than rosuvastatin. Br J Clin Pharmacol. 2014.

  41. Group SC, Link E, Parish S, Armitage J, Bowman L, Heath S, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med. 2008;359:789–99.

    Article  Google Scholar 

  42. Ieiri I, Higuchi S, Sugiyama Y. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Exp Opin Drug Metab Toxicol. 2009;5:703–29.

    Article  CAS  Google Scholar 

  43. Niemi M, Neuvonen PJ, Hofmann U, Backman JT, Schwab M, Lutjohann D, et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics. 2005;15:303–9.

    Article  CAS  PubMed  Google Scholar 

  44. Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther. 2003;73:554–65.

    Article  CAS  PubMed  Google Scholar 

  45. Varma MV, Chang G, Lai Y, Feng B, El-Kattan AF, Litchfield J, et al. Physicochemical property space of hepatobiliary transport and computational models for predicting rat biliary excretion. Drug Metab Dis Biol Fate Chem. 2012;40:1527–37.

    Article  CAS  Google Scholar 

  46. Kusuhara H, Sugiyama Y. Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters. Drug Metab Rev. 2010;42:539–50.

    Article  CAS  PubMed  Google Scholar 

  47. Lai Y. Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion. Exp Opin Drug Metab Toxicol. 2009;5:1175–87.

    Article  CAS  Google Scholar 

  48. Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dis Biol Fate Chem. 2006;34:1247–54.

    Article  CAS  Google Scholar 

  49. Poirier A, Cascais A-C, Funk C, Lavé T. Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Pharmacodyn. 2009;36:585–611.

    Article  CAS  PubMed  Google Scholar 

  50. Yang X, Gandhi YA, Duignan DB, Morris ME. Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure-pharmacokinetic relationships. AAPS J. 2009;11:511–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Fagerholm U. Prediction of human pharmacokinetics-biliary and intestinal clearance and enterohepatic circulation. J Pharm Pharmacol. 2008;60:535–42.

    Article  CAS  PubMed  Google Scholar 

  52. Luo G, Johnson S, Hsueh MM, Zheng J, Cai H, Xin B, et al. In silico prediction of biliary excretion of drugs in rats based on physicochemical properties. Drug Metab Dis Biol Fate Chem. 2010;38:422–30.

    Article  CAS  Google Scholar 

  53. Millburn P, Smith RL, Williams RT. Biliary excretion in foreign compounds. Sulphonamide drugs in the rat. Biochem J. 1967;105:1283–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Millburn P, Smith RL, Williams RT. Biliary excretion of foreign compounds. Biphenyl, stilboestrol and phenolphthalein in the rat: molecular weight, polarity and metabolism as factors in biliary excretion. Biochem J. 1967;105:1275–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kato Y, Takahara S, Kato S, Kubo Y, Sai Y, Tamai I, et al. Involvement of multidrug resistance-associated protein 2 (Abcc2) in molecular weight-dependent biliary excretion of beta-lactam antibiotics. Drug Metab Dis Biol Fate Chem. 2008;36:1088–96.

    Article  CAS  Google Scholar 

  56. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323:1718–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gandhi YA, Morris ME. Structure-activity relationships and quantitative structure-activity relationships for breast cancer resistance protein (ABCG2). AAPS J. 2009;11:541–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Matsson P, Pedersen JM, Norinder U, Bergstrom CA, Artursson P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26:1816–31.

    Article  CAS  PubMed  Google Scholar 

  59. Varma MV, Ambler CM, Ullah M, Rotter CJ, Sun H, Litchfield J, et al. Targeting intestinal transporters for optimizing oral drug absorption. Curr Drug Metab. 2010;11:730–42.

    Article  CAS  PubMed  Google Scholar 

  60. Varma MV, Panchagnula R. pH-dependent functional activity of P-glycoprotein in limiting intestinal absorption of protic drugs: kinetic analysis of quinidine efflux in situ. J Pharm Sci. 2005;94:2632–43.

    Article  CAS  PubMed  Google Scholar 

  61. Varma MV, Gardner I, Steyn SJ, Nkansah P, Rotter CJ, Whitney-Pickett C, et al. pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 2012;9:1199–212.

    CAS  PubMed  Google Scholar 

  62. Song IS, Choi MK, Jin QR, Shim WS, Shim CK. Increased affinity to canalicular P-gp via formation of lipophilic ion-pair complexes with endogenous bile salts is associated with mw threshold in hepatobiliary excretion of quaternary ammonium compounds. Pharm Res. 2010;27:823–31.

    Article  CAS  PubMed  Google Scholar 

  63. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Custodio JM, Wu C-Y, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008;60:717–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.

    Article  CAS  PubMed  Google Scholar 

  66. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4–17.

    Article  Google Scholar 

  67. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23.

    Article  CAS  PubMed  Google Scholar 

  68. Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6:313–9.

    Article  CAS  Google Scholar 

  69. Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53:1098–108.

    Article  CAS  PubMed  Google Scholar 

  70. Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dis Biol Fate Chem. 2008;36:1385–405.

    Article  CAS  Google Scholar 

  71. Lewis DF. Homology modelling of human cytochromes P450 involved in xenobiotic metabolism and rationalization of substrate selectivity. Exp Toxicol Pathol. 1999;51:369–74.

    Article  CAS  PubMed  Google Scholar 

  72. Lewis DF, Modi S, Dickins M. Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002;34:69–82.

    Article  CAS  PubMed  Google Scholar 

  73. Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 2005;78:260–77.

    Article  CAS  PubMed  Google Scholar 

  74. Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. 2005;45:689–723.

  75. Fagerholm U. Prediction of human pharmacokinetics - renal metabolic and excretion clearance. J Pharm Pharmacol. 2007;59:1463–71.

    Article  PubMed  CAS  Google Scholar 

  76. Sun H, Frassetto L, Benet LZ. Effects of renal failure on drug transport and metabolism. Pharmacol Ther. 2006;109:1–11.

    Article  CAS  PubMed  Google Scholar 

  77. Jappar D, Hu Y, Keep RF, Smith DE. Transport mechanisms of carnosine in SKPT cells: contribution of apical and basolateral membrane transporters. Pharm Res. 2009;26:172–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Masereeuw R, Russel FG. Mechanisms and clinical implications of renal drug excretion. Drug Metab Rev. 2001;33:299–351.

    Article  CAS  PubMed  Google Scholar 

  79. Ahlin G, Karlsson J, Pedersen JM, Gustavsson L, Larsson R, Matsson P, et al. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J Med Chem. 2008;51:5932–42.

    Article  CAS  PubMed  Google Scholar 

  80. Inui KI, Masuda S, Saito H. Cellular and molecular aspects of drug transport in the kidney. Kidney Int. 2000;58:944–58.

    Article  CAS  PubMed  Google Scholar 

  81. Launay-Vacher V, Izzedine H, Karie S, Hulot JS, Baumelou A, Deray G. Renal tubular drug transporters. Nephron Physiol. 2006;103:p97–106.

    Article  CAS  PubMed  Google Scholar 

  82. Varma MV, Feng B, Obach RS, Troutman MD, Chupka J, Miller HR, et al. Physicochemical determinants of human renal clearance. J Med Chem. 2009;52:4844–52.

    Article  CAS  PubMed  Google Scholar 

  83. Goodwin JT, Conradi RA, Ho NF, Burton PS. Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume. J Med Chem. 2001;44:3721–9.

    Article  CAS  PubMed  Google Scholar 

  84. Varma MV, Sateesh K, Panchagnula R. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol Pharm. 2005;2:12–21.

    Article  CAS  PubMed  Google Scholar 

  85. Ullrich KJ. Renal transporters for organic anions and organic cations. Structural requirements for substrates. J Membr Biol. 1997;158:95–107.

    Article  CAS  PubMed  Google Scholar 

  86. Bednarczyk D, Ekins S, Wikel JH, Wright SH. Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003;63:489–98.

    Article  CAS  PubMed  Google Scholar 

  87. Feng B, LaPerle JL, Chang G, Varma MV. Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state. Exp Opin Drug Metab Toxicol. 2010;6:939–52.

    Article  CAS  Google Scholar 

  88. Berellini G, Waters NJ, Lombardo F. In silico prediction of total human plasma clearance. J Chem Inf Model. 2012;52:2069–78.

    Article  CAS  PubMed  Google Scholar 

  89. Lombardo F, Obach RA, Varma MV, Stringer R, Berellini G. Clearance mechanism assignment and total clearance prediction in human based upon in silico models. J Med Chem. 2014.

  90. Kusama M, Toshimoto K, Maeda K, Hirai Y, Imai S, Chiba K, et al. In silico classification of major clearance pathways of drugs with their physiochemical parameters. Drug Metab Dispos. 2010;38:1362–70.

    Article  CAS  PubMed  Google Scholar 

  91. Varma MV, Bi YA, Kimoto E, Lin J. Quantitative prediction of transporter- and enzyme-mediated clinical drug-drug interactions of organic anion-transporting polypeptide 1B1 substrates using a mechanistic net-effect model. J Pharmacol Exp Ther. 2014;351:214–23.

    Article  PubMed  CAS  Google Scholar 

  92. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63:157–81.

    Article  CAS  PubMed  Google Scholar 

  93. Gupta RR, Gifford EM, Liston T, Waller CL, Hohman M, Bunin BA, et al. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties. Drug Metab Dispos. 2010;38:2083–90.

    Article  CAS  PubMed  Google Scholar 

  94. Tang M, Mukundan M, Yang J, Charpentier N, LeCluyse EL, Black C, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther. 2006;319:1467–76.

    Article  CAS  PubMed  Google Scholar 

  95. Davies NM, Anderson KE. Clinical pharmacokinetics of diclofenac. Therapeutic insights and pitfalls. Clin Pharmacokinet. 1997;33:184–213.

    Article  CAS  PubMed  Google Scholar 

  96. King C, Tang W, Ngui J, Tephly T, Braun M. Characterization of rat and human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of diclofenac. Toxicol Sci Off J Soc Toxicol. 2001;61:49–53.

    Article  CAS  Google Scholar 

  97. Andersson TB, Bredberg E, Ericsson H, Sjoberg H. An evaluation of the in vitro metabolism data for predicting the clearance and drug-drug interaction potential of CYP2C9 substrates. Drug Metab Dis Biol Fate Chem. 2004;32:715–21.

    Article  CAS  Google Scholar 

  98. McGinnity DF, Parker AJ, Soars M, Riley RJ. Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dis Biol Fate Chem. 2000;28:1327–34.

    CAS  Google Scholar 

  99. Kirchheiner J, Thomas S, Bauer S, Tomalik-Scharte D, Hering U, Doroshyenko O, et al. Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin Pharmacol Ther. 2006;80:657–67.

    Article  CAS  PubMed  Google Scholar 

  100. Chu XM, Zhang LF, Wang GJ, Zhang SN, Zhou JH, Hao HP. Influence of UDP-glucuronosyltransferase polymorphisms on valproic acid pharmacokinetics in Chinese epilepsy patients. Eur J Clin Pharmacol. 2012;68:1395–401.

    Article  CAS  PubMed  Google Scholar 

  101. Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet. 2001;40:587–603.

    Article  CAS  PubMed  Google Scholar 

  102. Lennernas H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42:1141–60.

    Article  PubMed  Google Scholar 

  103. Lau YY, Okochi H, Huang Y, Benet LZ. Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J Pharmacol Exp Ther. 2006;316:762–71.

    Article  CAS  PubMed  Google Scholar 

  104. Dingemanse J, van Giersbergen PL. Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacokinet. 2004;43:1089–115.

    Article  CAS  PubMed  Google Scholar 

  105. Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther. 2004;311:228–36.

    Article  CAS  PubMed  Google Scholar 

  106. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80:565–81.

    Article  CAS  PubMed  Google Scholar 

  107. Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004;311:139–46.

    Article  CAS  PubMed  Google Scholar 

  108. Fujino H, Saito T, Tsunenari Y, Kojima J. Effect of gemfibrozil on the metabolism of pitavastatin--determining the best animal model for human CYP and UGT activities. Drug Metabol Drug Interact. 2004;20:25–42.

    CAS  PubMed  Google Scholar 

  109. Li R, Ghosh A, Maurer TS, Kimoto E, Barton HA. Physiologically based pharmacokinetic prediction of telmisartan in human. Drug Metab Dis Biol Fate Chem. 2014;42:1646–55.

    Article  CAS  Google Scholar 

  110. McDowell JA, Chittick GE, Stevens CP, Edwards KD, Stein DS. Pharmacokinetic interaction of abacavir (1592U89) and ethanol in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother. 2000;44:1686–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Pea F, Furlanut M. Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet. 2001;40:833–68.

    Article  CAS  PubMed  Google Scholar 

  112. Baneyx G, Parrott N, Meille C, Iliadis A, Lave T. Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: influence of time between substrate and inducer administration. Eur J Pharm Sci. 2014;56:1–15.

    Article  CAS  PubMed  Google Scholar 

  113. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17:165–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Bailey DG, Dresser GK. Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs Drugs Devices Interv. 2004;4:281–97.

    Article  CAS  Google Scholar 

  115. Edsbacker S, Andersson T. Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn’s disease. Clin Pharmacokinet. 2004;43:803–21.

    Article  PubMed  Google Scholar 

  116. Brosen K. Drug interactions and the cytochrome P450 system. The role of cytochrome P450 1A2. Clin Pharmacokinet. 1995;29(1):20–5.

    Article  PubMed  Google Scholar 

  117. Niwa T, Shiraga T, Ishii I, Kagayama A, Takagi A. Contribution of human hepatic cytochrome p450 isoforms to the metabolism of psychotropic drugs. Biol Pharm Bull. 2005;28:1711–6.

    Article  CAS  PubMed  Google Scholar 

  118. Sutton D, Butler AM, Nadin L, Murray M. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharm Exp Ther. 1997;282:294–300.

    CAS  Google Scholar 

  119. van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35:692–706.

    Article  PubMed  CAS  Google Scholar 

  120. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46:681–96.

    Article  CAS  PubMed  Google Scholar 

  121. Bogni A, Monshouwer M, Moscone A, Hidestrand M, Ingelman-Sundberg M, Hartung T, et al. Substrate specific metabolism by polymorphic cytochrome P450 2D6 alleles. Toxicol In Vitro Int J Publ Assoc BIBRA. 2005;19:621–9.

    Article  CAS  Google Scholar 

  122. Jeong H, Choi S, Song JW, Chen H, Fischer JH. Regulation of UDP-glucuronosyltransferase (UGT) 1A1 by progesterone and its impact on labetalol elimination. Xenobiotica. 2008;38:62–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Paine MF, Shen DD, Kunze KL, Perkins JD, Marsh CL, McVicar JP, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60:14–24.

    Article  CAS  PubMed  Google Scholar 

  124. Crowe A. The influence of P-glycoprotein on morphine transport in Caco-2 cells. Comparison with paclitaxel. Eur J Pharmacol. 2002;440:7–16.

    Article  CAS  PubMed  Google Scholar 

  125. Chau N, Elliot DJ, Lewis BC, Burns K, Johnston MR, Mackenzie PI, et al. Morphine glucuronidation and glucosidation represent complementary metabolic pathways that are both catalyzed by UDP-glucuronosyltransferase 2B7: kinetic, inhibition, and molecular modeling studies. J Pharmacol Exp Ther. 2014;349:126–37.

    Article  PubMed  CAS  Google Scholar 

  126. Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dis Biol Fate Chem. 2010;38:981–7.

    Article  CAS  Google Scholar 

  127. Kanazawa H, Okada A, Higaki M, Yokota H, Mashige F, Nakahara K. Stereospecific analysis of omeprazole in human plasma as a probe for CYP2C19 phenotype. J Pharm Biomed Anal. 2003;30:1817–24.

    Article  CAS  PubMed  Google Scholar 

  128. Narimatsu S, Nakata T, Shimizudani T, Nagaoka K, Nakura H, Masuda K, et al. Regio- and stereoselective oxidation of propranolol enantiomers by human CYP2D6, cynomolgus monkey CYP2D17 and marmoset CYP2D19. Chem Biol Interact. 2011;189:146–52.

    Article  CAS  PubMed  Google Scholar 

  129. Gupta M, Kovar A, Meibohm B. The clinical pharmacokinetics of phosphodiesterase-5 inhibitors for erectile dysfunction. J Clin Pharmacol. 2005;45:987–1003.

    Article  CAS  PubMed  Google Scholar 

  130. Leveque D, Nivoix Y, Jehl F, Herbrecht R. Clinical pharmacokinetics of voriconazole. Int J Antimicrob Agents. 2006;27:274–84.

    Article  CAS  PubMed  Google Scholar 

  131. Jeu L, Piacenti FJ, Lyakhovetskiy AG, Fung HB. Voriconazole. Clin Ther. 2003;25:1321–81.

    Article  CAS  PubMed  Google Scholar 

  132. Beedham C, Miceli JJ, Obach RS. Ziprasidone metabolism, aldehyde oxidase, and clinical implications. J Clin Psychopharmacol. 2003;23:229–32.

    CAS  PubMed  Google Scholar 

  133. Li M, Anderson GD, Phillips BR, Kong W, Shen DD, Wang J. Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dis Biol Fate Chem. 2006;34:547–55.

    Article  CAS  Google Scholar 

  134. Ueo H, Motohashi H, Katsura T, Inui K. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005;70:1104–13.

    Article  CAS  PubMed  Google Scholar 

  135. Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, et al. Interactions of human organic anion transporters with diuretics. J Pharm Exp Ther. 2004;308:1021–9.

    Article  CAS  Google Scholar 

  136. Ye J, Liu Q, Wang C, Meng Q, Sun H, Peng J, et al. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol Rep PR. 2013;65:505–12.

    Article  CAS  PubMed  Google Scholar 

  137. Liu Q, Wang C, Meng Q, Huo X, Sun H, Peng J, et al. MDR1 and OAT1/OAT3 mediate the drug-drug interaction between puerarin and methotrexate. Pharm Res. 2014;31:1120–32.

    Article  CAS  PubMed  Google Scholar 

  138. El-Sheikh AA, Greupink R, Wortelboer HM, van den Heuvel JJ, Schreurs M, Koenderink JB, et al. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl Re J Lab Clin Med. 2013;162:398–409.

    Article  CAS  Google Scholar 

  139. Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dis Biol Fate Chem. 2008;36:2014–23.

    Article  CAS  Google Scholar 

  140. Ye J, Liu Q, Wang C, Meng Q, Peng J, Sun H, et al. Inhibitory effect of JBP485 on renal excretion of acyclovir by the inhibition of OAT1 and OAT3. Eur J Pharm Sci. 2012;47:341–6.

    Article  CAS  PubMed  Google Scholar 

  141. Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E, et al. A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther. 2005;315:337–45.

    Article  CAS  PubMed  Google Scholar 

  142. Muller F, Konig J, Hoier E, Mandery K, Fromm MF. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol. 2013;86:808–15.

    Article  PubMed  CAS  Google Scholar 

  143. Choi CI, Bae JW, Keum SK, Lee YJ, Lee HI, Jang CG, et al. Effects of OCT2 c.602C > T genetic variant on the pharmacokinetics of lamivudine. Xenobiotica. 2013;43:636–40.

    Article  CAS  PubMed  Google Scholar 

  144. Bourdet DL, Pritchard JB, Thakker DR. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J Pharmacol Exp Ther. 2005;315:1288–97.

    Article  CAS  PubMed  Google Scholar 

  145. Chu XY, Bleasby K, Yabut J, Cai X, Chan GH, Hafey MJ, et al. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein. J Pharmacol Exp Ther. 2007;321:673–83.

    Article  CAS  PubMed  Google Scholar 

  146. Lewis DF. Modelling human cytochromes P450 for evaluating drug metabolism: an update. Drug Metabol Drug Interact. 2000;16:307–24.

    CAS  PubMed  Google Scholar 

  147. Hosea NA, Collard WT, Cole S, Maurer TS, Fang RX, Jones H, et al. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J Clin Pharmacol. 2009;49:513–33.

    Article  CAS  PubMed  Google Scholar 

  148. He YJ, Zhang W, Chen Y, Guo D, Tu JH, Xu LY, et al. Rifampicin alters atorvastatin plasma concentration on the basis of SLCO1B1 521T>C polymorphism. Clin Chim Acta Int J Clin Chem. 2009;405:49–52.

    Article  CAS  Google Scholar 

  149. Asberg A, Hartmann A, Fjeldsa E, Bergan S, Holdaas H. Bilateral pharmacokinetic interaction between cyclosporine A and atorvastatin in renal transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2001;1:382–6.

    Article  CAS  Google Scholar 

  150. Mazzu AL, Lasseter KC, Shamblen EC, Agarwal V, Lettieri J, Sundaresen P. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther. 2000;68:391–400.

    Article  CAS  PubMed  Google Scholar 

  151. Amsden GW, Kuye O, Wei GC. A study of the interaction potential of azithromycin and clarithromycin with atorvastatin in healthy volunteers. J Clin Pharmacol. 2002;42:444–9.

    Article  CAS  PubMed  Google Scholar 

  152. Siedlik PH, Olson SC, Yang BB, Stern RH. Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol. 1999;39:501–4.

    CAS  PubMed  Google Scholar 

  153. Prueksaritanont T, Chu X, Evers R, Klopfer SO, Caro L, Kothare PA, et al. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin. Br J Clin Pharmacol. 2014;78:587–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Muck W, Mai I, Fritsche L, Ochmann K, Rohde G, Unger S, et al. Increase in cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients. Clin Pharmacol Ther. 1999;65:251–61.

    Article  CAS  PubMed  Google Scholar 

  155. Backman JT, Kyrklund C, Neuvonen M, Neuvonen PJ. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther. 2002;72:685–91.

    Article  CAS  PubMed  Google Scholar 

  156. Kantola T, Backman JT, Niemi M, Kivisto KT, Neuvonen PJ. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol. 2000;56:225–9.

    Article  CAS  PubMed  Google Scholar 

  157. Park JW, Siekmeier R, Lattke P, Merz M, Mix C, Schuler S, et al. Pharmacokinetics and pharmacodynamics of fluvastatin in heart transplant recipients taking cyclosporine A. J Cardiovasc Pharmacol Ther. 2001;6:351–61.

    Article  CAS  PubMed  Google Scholar 

  158. Transon C, Leemann T, Vogt N, Dayer P. in vivo inhibition profile of cytochrome P450TB (CYP2C9) by (+/−)-fluvastatin. Clin Pharmacol Ther. 1995;58:412–7.

    Article  CAS  PubMed  Google Scholar 

  159. Muck W, Ochmann K, Rohde G, Unger S, Kuhlmann J. Influence of erythromycin pre- and co-treatment on single-dose pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Eur J Clin Pharmacol. 1998;53:469–73.

    Article  CAS  PubMed  Google Scholar 

  160. Li R, Barton HA, Yates PD, Ghosh A, Wolford AC, Riccardi KA, Maurer TS. A “middle-out” approach to human pharmacokinetic predictions for OATP substrates using physiologically-based pharmacokinetic modeling. J Pharmacokinet Pharmacodyn. 2014.

  161. Jones HM, Barton HA, Lai Y, Bi YA, Kimoto E, Kempshall S, et al. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dis Biol Fate Chem. 2012;40:1007–17.

    Article  CAS  Google Scholar 

  162. Soars MG, Grime K, Sproston JL, Webborn PJ, Riley RJ. Use of hepatocytes to assess the contribution of hepatic uptake to clearance in vivo. Drug Metab Dispos. 2007;35:859–65.

    Article  CAS  PubMed  Google Scholar 

  163. Ménochet K, Kenworthy KE, Houston JB, Galetin A. Use of mechanistic modeling to assess interindividual variability and interspecies differences in active uptake in human and rat hepatocytes. Drug Metab Dispos. 2012;40:1744–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  164. Swift B, Pfeifer ND, Brouwer KL. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev. 2010;42:446–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, et al. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos. 2010;38:215–22.

    Article  CAS  PubMed  Google Scholar 

  166. Greenblatt DJ, Peters DE, Oleson LE, Harmatz JS, MacNab MW, Berkowitz N, et al. Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an experimental catalytic mimic of glutathione oxidase. Br J Clin Pharmacol. 2009;68:920–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Tomita Y, Maeda K, Sugiyama Y. Ethnic variability in the plasma exposures of OATP1B1 substrates such as HMG-CoA reductase inhibitors: a kinetic consideration of its mechanism. Clin Pharmacol Ther. 2013;94:37–51.

    Article  CAS  PubMed  Google Scholar 

  168. Maeda K, Sugiyama Y. Transporter biology in drug approval: regulatory aspects. Mol Asp Med. 2013;34:711–8.

    Article  CAS  Google Scholar 

  169. Paine SW, Ménochet K, Denton R, McGinnity DF, Riley RJ. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption. Drug Metab Dispos. 2011;39:1008–13.

    Article  CAS  PubMed  Google Scholar 

  170. Feng B, Varma MV, Costales C, Zhang H, Tremaine L. In vitro and in vivo approaches to characterize transporter-mediated disposition in drug discovery. Exp Opin Drug Disc. 2014;9:873–90.

    Article  CAS  Google Scholar 

  171. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  172. CDER/FDA. Guidance for industry: Waiver of in vivo bioavailability and bioequivalence studies for imidiate-release solid oral dosage forms based on a biopharmaceutics classification system. Center for Drug Evaluation and Research 2000.

  173. Varma MV, Khandavilli S, Ashokraj Y, Jain A, Dhanikula A, Sood A, et al. Biopharmaceutic classification system: a scientific framework for pharmacokinetic optimization in drug research. Curr Drug Metab. 2004;5:375–88.

    Article  CAS  PubMed  Google Scholar 

  174. Lennernas H. Human intestinal permeability. J Pharm Sci. 1998;87:403–10.

    Article  CAS  PubMed  Google Scholar 

  175. Sandstrom R, Karlsson A, Knutson L, Lennernas H. Jejunal absorption and metabolism of R/S-verapamil in humans. Pharm Res. 1998;15:856–62.

    Article  CAS  PubMed  Google Scholar 

  176. Benet LZ, Amidon GL, Barends DM, Lennernas H, Polli JE, Shah VP, et al. The use of BDDCS in classifying the permeability of marketed drugs. Pharm Res. 2008;25:483–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Chen ML, Amidon GL, Benet LZ, Lennernas H, Yu LX, The BCS. BDDCS, and regulatory guidances. Pharm Res. 2011;28:1774–8.

    Article  CAS  PubMed  Google Scholar 

  178. Avdeef A. Absorption and drug development: solubility, permeability, and charge state. John Wiley & Sons, 2012.

  179. Lee PH, Ayyampalayam SN, Carreira LA, Shalaeva M, Bhattachar S, Coselmon R, et al. In silico prediction of ionization constants of drugs. Mol Pharm. 2007;4:498–512.

    Article  CAS  PubMed  Google Scholar 

  180. Fan PW, Song Y, Berezhkovskiy LM, Cheong J, Plise EG, Khojasteh SC. Practical permeability-based hepatic clearance classification system (HepCCS) in drug discovery. Future Med Chem. 2014;6:1995–2012.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge Drs. R. Scott Obach, Tristan Maurer, David Tess, Shinji Yamazaki and Larry Tremaine for critical review of the manuscript and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman F. El-Kattan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, M.V., Steyn, S.J., Allerton, C. et al. Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS). Pharm Res 32, 3785–3802 (2015). https://doi.org/10.1007/s11095-015-1749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1749-4

KEY WORDS

Navigation