Skip to main content
Log in

The Influence of Stabilized Deconjugated Ursodeoxycholic Acid on Polymer-Hydrogel System of Transplantable NIT-1 Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

A Correction to this article was published on 27 January 2022

An Erratum to this article was published on 24 February 2016

This article has been updated

Abstract

Purpose

The encapsulation of pancreatic β-cells in biocompatible matrix has generated great interest in diabetes treatment. Our work has shown improved microcapsules when incorporating the bile acid ursodeoxycholic acid (UDCA), in terms of morphology and cell viability although cell survival remained low. Thus, the study aimed at incorporating the polyelectrolytes polyallylamine (PAA) and poly-l-ornithine (PLO), with the polymer sodium alginate (SA) and the hydrogel ultrasonic gel (USG) with UDCA and examined cell viability and functionality post microencapsulation.

Methods

Microcapsules without (control) and with UDCA (test) were produced using 1% PLO, 2.5% PAA, 1.8% SA and 4.5% USG. Pancreatic β-cells were microencapsulated and the microcapsules’ morphology, surface components, cellular and bile acid distribution, osmotic and mechanical stability as well as biocompatibilities, insulin production, bioenergetics and the inflammatory response were tested.

Results

Incorporation of UDCA at 4% into a PLO-PAA-SA formulation system increased cell survival (p < 0.01), insulin production (p < 0.01), reduced the inflammatory profile (TNF-α, IFN-ϒ, IL-6 and IL-1β; p < 0.01) and improved the microcapsule physical and mechanical strength (p < 0.01).

Conclusions

β-cell microencapsulation using 1% PLO, 2.5% PAA, 1.8% SA, 4.5% USG and the bile acid UDCA (4%) has good potential in cell transplantation and diabetes treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

Abbreviations

ACMT:

Artificial cell microencapsulation technology

ATPP:

Adenosine triphosphate production

BR:

Basal respiration

CBA:

Cytokine bead array

CE:

Coupling efficiency

DM:

Diabetes mellitus

DMEM:

Dulbecco’s modified eagle’s medium

ECAR:

Extracellular acidification rate

EDXR:

Energy dispersive x-ray spectroscopy

ELISA:

Enzyme-linked immunosorbent assay

G:

Glycolysis

IFN-γ:

Interferon-γ

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

MR:

Maximal respiration

MTT:

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)

NGD-ECAR:

Non-glucose-derived extracellular acidification rate

OCR:

Oxygen consumption rate

OM:

Optical microscopy

PAA:

Polyallylamine

PL:

Proton leak

PLO:

Poly-l-ornithine

PPR:

Proton production rate

SA:

Sodium alginate

SEM:

Scanning electron microscopy

SRC:

Spare respiratory capacity

T1D:

Type 1 diabetes mellitus

T2D:

Type 2 diabetes mellitus

TNF-α:

Tumour necrosis factor-α

TRITC:

Tetramethylrhodamine isothiocyanate

UDCA:

Ursodeoxycholic acid

USG:

Ultrasonic gel

References

  1. Donath MY, Ehses JA, Maedler K, Schumann DM, Ellingsgaard H, Eppler E, et al. Mechanisms of β-cell death in type 2 diabetes. Diabetes. 2005;54 suppl 2:S108–13.

    Article  CAS  Google Scholar 

  2. Vehik K, Dabelea D. The changing epidemiology of type 1 diabetes: why is it going through the roof? Diabetes Metab Res Rev. 2011;27(1):3–13.

    Article  Google Scholar 

  3. Negrulj R, Mooranian A, Al-Salami H. Potentials and limitations of bile acids in type 2 diabetes mellitus: applications of microencapsulation as a novel oral delivery system. J Endocrinol Diabetes Mellitus. 2013;1(2):49–59.

    Google Scholar 

  4. Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng. 2007;13(3):589–99.

    Article  CAS  Google Scholar 

  5. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333–46.

    Article  CAS  Google Scholar 

  6. Sutherland DE. Current status of beta-cell replacement therapy (pancreas and islet transplantation) for treatment of diabetes mellitus. Transplant Proc. 2003;35(5):1625–7.

    Article  CAS  Google Scholar 

  7. Mooranian A, Negrulj R, Mathavan S, Martinez J, Sciarretta J, Chen-Tan N, et al. Stability and release kinetics of an advanced gliclazide-cholic acid formulation: the use of artificial-cell microencapsulation in slow release targeted oral delivery of antidiabetics. J Pharm Innov. 2014;9:150–7.

    Article  Google Scholar 

  8. Hafiz MM, Faradji RN, Froud T, Pileggi A, Baidal DA, Cure P, et al. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation. 2005;80(12):1718–28.

    Article  CAS  Google Scholar 

  9. Steele JA, Halle JP, Poncelet D, Neufeld RJ. Therapeutic cell encapsulation techniques and applications in diabetes. Adv Drug Deliv Rev. 2014;67–68:74–83.

    Article  Google Scholar 

  10. Lacík I. Polymer chemistry in diabetes treatment by encapsulated islets of Langerhans: review to 2006. Aust J Chem. 2006;59(8):508–24.

    Article  Google Scholar 

  11. de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev. 2014;67–68:15–34.

    Article  Google Scholar 

  12. Vaithilingam V, Tuch BE. Islet transplantation and encapsulation: an update on recent developments. Rev Diabet Stud. 2011;8(1):51–67.

    Article  Google Scholar 

  13. Orive G, Maria Hernández R, Rodríguez Gascón A, Calafiore R, Swi Chang TM, Vos P, et al. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol. 2004;22(2):87–92.

    Article  CAS  Google Scholar 

  14. Schmidt JJ, Rowley J, Kong HJ. Hydrogels used for cell-based drug delivery. J Biomed Mater Res A. 2008;87(4):1113–22.

    Article  Google Scholar 

  15. Bhatia SR, Khattak SF, Roberts SC. Polyelectrolytes for cell encapsulation. Curr Opin Colloid Interface Sci. 2005;10(1):45–51.

    Article  CAS  Google Scholar 

  16. Mooranian A, Negrulj R, Chen-Tan N, Fakhoury M, Arfuso F, Jones F, et al. Advanced bile acid-based multi-compartmental microencapsulated pancreatic beta-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment. Artif Cells Nanomed Biotechnol. 2014;1–8.

  17. Mooranian A, Negrulj R, Arfuso F, Al-Salami H. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells. Artif Cells Nanomed Biotechnol. 2016;44(1):194–200.

  18. Mooranian A, Negrulj R, Arfuso F, Al-Salami H. The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study. Drug Deliv and Transl Res. 2015;1–12.

  19. Prakash S, Soe-Lin H. Strategy for cell therapy: polymers for live cell encapsulation and delivery. Trends Biomater Artif Organs. 2004;18(1):24–35.

    Google Scholar 

  20. Mooranian A, Negrulj R, Al-Salami H. The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable β-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies. Drug Deliv and Transl Res. 2016;6(1):17–23.

  21. Hamaguchi K, Gaskins HR, Leiter EH. NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse. Diabetes. 1991;40(7):842–9.

    Article  CAS  Google Scholar 

  22. Mooranian A, Negrulj R, Mikov M, Golocorbin-Kon S, Arfuso F, Al-Salami H. Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study. J Microencapsul. 2015;32(6):589–97.

    Article  CAS  Google Scholar 

  23. Mooranian A, Negrulj R, Chen-Tan N, Al-Sallami HS, Fang Z, Mukkur T, et al. Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: a characterization study. Drug Des Dev Ther. 2014;8:1003.

    Google Scholar 

  24. Mooranian A, Negrulj R, Mathavan S, Martinez J, Sciarretta J, Chen-Tan N, et al. An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations. Pharm Dev Technol. 2015;20(6):702–9.

    Article  CAS  Google Scholar 

  25. Sherman I, Fisher M. Hepatic transport of fluorescent molecules: in vivo studies using intravital TV microscopy. Hepatology. 1986;6(3):444–9.

    Article  CAS  Google Scholar 

  26. Negrulj R, Mooranian A, Chen-Tan N, Al-Sallami HS, Mikov M, Golocorbin-Kon S, et al. Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes. Artif Cells Nanomed Biotechnol. 2015;1–8.

  27. Mooranian A, Negrulj R, Al-Sallami HS, Fang Z, Mikov M, Golocorbin-Kon S, et al. Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment. J Microencapsul. 2015;32(2):151–6.

    Article  CAS  Google Scholar 

  28. Uludag H, Sefton MV. Colorimetric assay for cellular activity in microcapsules. Biomaterials. 1990;11(9):708–12.

    Article  CAS  Google Scholar 

  29. De Castro M, Orive G, Hernandez RM, Gascon AR, Pedraz JL. Comparative study of microcapsules elaborated with three polycations (PLL, PDL, PLO) for cell immobilization. J Microencapsul. 2005;22(3):303–15.

    Article  Google Scholar 

  30. Bertolotti A, Borgogna M, Facoetti A, Marsich E, Nano R. The effects of alginate encapsulation on NIT-1 insulinoma cells: viability, growth and insulin secretion. In vivo. 2009;23(6):929–35.

    CAS  PubMed  Google Scholar 

  31. Vaithilingam V, Kollarikova G, Qi M, Lacik I, Oberholzer J, Guillemin GJ, et al. Effect of prolonged gelling time on the intrinsic properties of barium alginate microcapsules and its biocompatibility. J Microencapsul. 2011;28(6):499–507.

    Article  CAS  Google Scholar 

  32. Lee YY, Hong SH, Lee YJ, Chung SS, Jung HS, Park SG, et al. Tauroursodeoxycholate (TUDCA), chemical chaperone, enhances function of islets by reducing ER stress. Biochem Biophys Res Commun. 2010;397(4):735–9.

    Article  CAS  Google Scholar 

  33. de Vos P, de Haan BJ, Kamps JA, Faas MM, Kitano T. Zeta-potentials of alginate-PLL capsules: a predictive measure for biocompatibility? J Biomed Mater Res A. 2007;80(4):813–9.

    Article  Google Scholar 

  34. Labhasetwar VD, Dorle AK. A study on the zeta potential of microcapsules during ageing. J Microencapsul. 1991;8(1):83–5.

    Article  CAS  Google Scholar 

  35. Xie HG, Li XX, Lv GJ, Xie WY, Zhu J, Luxbacher T, et al. Effect of surface wettability and charge on protein adsorption onto implantable alginate‐chitosan‐alginate microcapsule surfaces. J Biomed Mater Res A. 2010;92(4):1357–65.

    PubMed  Google Scholar 

  36. Naldini A, Carraro F, Silvestri S, Bocci V. Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells. J Cell Physiol. 1997;173(3):335–42.

    Article  CAS  Google Scholar 

  37. Zheng X, Zheng X, Wang X, Ma Z, Gupta Sunkari V, Botusan I, et al. Acute hypoxia induces apoptosis of pancreatic [beta]-cell by activation of the unfolded protein response and upregulation of CHOP. Cell Death Dis. 2012;3:e322.

    Article  CAS  Google Scholar 

  38. Donath MY, Böni-Schnetzler M, Ellingsgaard H, Ehses JA. Islet inflammation impairs the pancreatic β-cell in type 2 diabetes. Physiology (Bethesda, Md). 2009;24:325–31.

    CAS  Google Scholar 

  39. Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15(14):1677–89.

    Article  CAS  Google Scholar 

  40. Kullmann F, Arndt H, Gross V, Ruschoff J, Scholmerich J. Beneficial effect of ursodeoxycholic acid on mucosal damage in trinitrobenzene sulphonic acid-induced colitis. Eur J Gastroenterol Hepatol. 1997;9(12):1205–11.

    CAS  PubMed  Google Scholar 

  41. Martinez-Moya P, Romero-Calvo I, Requena P, Hernandez-Chirlaque C, Aranda CJ, Gonzalez R, et al. Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis. Int Immunopharmacol. 2013;15(2):372–80.

    Article  CAS  Google Scholar 

  42. Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res. 2009;50(9):1721–34.

    Article  CAS  Google Scholar 

  43. Takka S, Cali AG. Bile salt-reinforced alginate-chitosan beads. Pharm Dev Technol. 2012;17(1):23–9.

    Article  CAS  Google Scholar 

  44. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210(4472):908–10.

    Article  CAS  Google Scholar 

  45. Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation. 2010;90(10):1054–62.

    Article  Google Scholar 

  46. Mooranian A, Negrulj R, Al-Salami H. The effects of ionic gelation- vibrational jet flow technique in fabrication of microcapsules incorporating beta-cell: applications in type-1 diabetes. Curr Diabetes Rev. 2016. doi:10.2174/1573399812666151229101756.

  47. Mooranian A, Negrulj R, Al-Salami H. Viability and topographical analysis of microencapsulated β-cells exposed to a biotransformed tertiary bile acid: an ex vivo study. Int J Nano Biomater. 2016;(in press). http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijnbm.

  48. Mooranian A, Negrulj R, Morahan G, Jamieson E, Al-Salami H. Designing anti-diabetic β-cells microcapsules using polystyrenic sulfonate, polyallylamine and a tertiary bile acid: morphology, bioenergetics and cytokine analysis. Biotechnol Prog. 2016. doi:10.1002/btpr.2223.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge Australian Postgraduate Award (APA) + Curtin Research Scholarship (CRS) for their support. The authors acknowledge the Curtin Health Innovation Research Institute for provision of laboratory space and technology platforms utilised in this study and also acknowledge the use of laboratory equipment, scientific and technical assistance of the Curtin University, Microscopy and Microanalysis Facility, which has been partially funded by the University, State and Commonwealth Governments. The authors also acknowledge the ARC Centre of Excellence in Plant Energy Biology (University of Western Australia) for training, support and access to equipment. The NIT-1 pancreatic mouse β-cells were a generous donation from Professor Grant Morahan at the University of Western Australia. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Al-Salami.

Additional information

The original online version of this article was revised to correct Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mooranian, A., Negrulj, R. & Al-Salami, H. The Influence of Stabilized Deconjugated Ursodeoxycholic Acid on Polymer-Hydrogel System of Transplantable NIT-1 Cells. Pharm Res 33, 1182–1190 (2016). https://doi.org/10.1007/s11095-016-1863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1863-y

KEY WORDS

Navigation