Skip to main content

Advertisement

Log in

Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma

  • EXPERT REVIEW
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Extensive hypoxic regions are the daunting hallmark of glioblastoma, as they host aggressive stem-like cells, hinder drug delivery and shield cancer cells from the effects of radiotherapy. Nanotechnology could address most of these issues, as it employs nanoparticles (NPs) carrying drugs that selectively accumulate and achieve controlled drug release in tumor tissues. Methods overcoming the stiff interstitium and scarce vascularity within hypoxic zones include the incorporation of collagenases to degrade the collagen-rich tumor extracellular matrix, the use of multistage systems that progressively reduce NP size or of NP-loaded cells that display inherent hypoxia-targeting abilities. The unfavorable hypoxia-induced low pH could be converted into a therapeutical advantage by pH-responsive NPs or multilayer NPs, while overexpressed markers of hypoxic cells could be specifically targeted for an enhanced preferential drug delivery. Finally, promising new gene therapeutics could also be incorporated into nanovehicles, which could lead to silencing of hypoxia-specific genes that are overexpressed in cancer cells. In this review, we highlight NPs which have shown promising results in targeting cancer hypoxia and we discuss their applicability in glioblastoma, as well as possible limitations. Novel research directions in this field are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Au-NPs:

Gold nanoparticles

BBB:

Blood–brain barrier

BMDMs:

Bone marrow-derived monocytes

CAF:

Cancer-associated fibroblast

CAIX:

Carbonic anhydrase IX

CAP:

Cleavable amphiphilic peptide

CD:

Cluster of differentiation

CED:

Convection-enhanced delivery

DOPE:

1,2-dioleyl-sn-glycero-3-phosphoethanolamine

ECM:

Extracellular matrix

EGFR:

Endothelial growth factor receptor

EPR:

Enhanced permeation and retention

FAP-α:

Fibroblast activation protein-α

FUS:

Focused ultrasound

GBM:

Glioblastoma

GLUT-1:

Glucose transporter-1

GSC:

Glioblastoma stem cell

HA:

Hyaluronan

HIF:

Hypoxia-induced factor

HRE:

Hypoxia-response elements

HZ:

Hypoxic tumor zone

IGF:

Insulin growth factor

IGFBP:

Insulin-like growth binding proteins

LbL:

Layer-by-layer

LRP1:

Low density lipoprotein receptor-related protein 1

MDR1:

Multidrug resistance 1

MDR1:

Multidrug resistance drug 1

MMP:

Matrix metalloproteinase

NP:

Nanoparticle

NSC:

Neural stem cell

ObR:

Leptin receptor

Oct4:

Octamer-binding transcription factor 4

PAH:

Poly(allylamine hydrochloride)

PEG:

Poly(ethylene glycol)

PEI:

Polyethyleneimine

PET- CT:

Positron emission tomography-computed tomography

pHLIP:

pH Low Insertion Peptide

PLL:

Poly-L-lysine

PS:

Phosphatydilserine

RAGE:

Receptor for advanced glycation end-products

RES:

Reticuloendothelial system

SapC DOPS:

Saposin C dioleoylphosphatidylserine

SDF-1:

Stromal cell-derived factor 1

siRNA:

Small interfering ribonucleic acid

TAM:

Tumor associated macrophage

TfR:

Transferrin receptor

VEGF:

Vascular endothelial growth factor

VHL:

Von Hippel Lindau

REFERENCES

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  3. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain: J Neurol. 2010;133(Pt 4):983–95.

    Article  Google Scholar 

  4. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology. 2005;7(2):134–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8(20):3274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rong Y, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65(6):529–39.

    Article  PubMed  Google Scholar 

  7. Rapisarda A, Melillo G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol. 2012;9(7):378–90.

    Article  CAS  PubMed  Google Scholar 

  8. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004;64(3):920–7.

    Article  CAS  PubMed  Google Scholar 

  9. Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis. Cancer Lett. 2015;359(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15(6):501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 2011;18(5):829–40.

    Article  CAS  PubMed  Google Scholar 

  12. Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, Oefner PJ, et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro-Oncology. 2009;11(4):368–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463(7279):318–25.

    Article  CAS  PubMed  Google Scholar 

  15. Sheehan JP, Shaffrey ME, Gupta B, Larner J, Rich JN, Park DM. Improving the radiosensitivity of radioresistant and hypoxic glioblastoma. Future Oncol. 2010;6(10):1591–601.

    Article  CAS  PubMed  Google Scholar 

  16. Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18 F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14(9):2623–30.

    Article  CAS  Google Scholar 

  17. Kawai N, Maeda Y, Kudomi N, Miyake K, Okada M, Yamamoto Y, et al. Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18 F-fluoromisonidazole PET in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging. 2011;38(3):441–50.

    Article  CAS  PubMed  Google Scholar 

  18. Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, et al. Complementary but distinct roles for MRI and 18 F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med: Off Publ, Soc Nucl Med. 2009;50(1):36–44.

    Article  Google Scholar 

  19. Meyers JD, Doane T, Burda C, Basilion JP. Nanoparticles for imaging and treating brain cancer. Nanomedicine. 2013;8(1):123–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013;2013:238428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Welter M, Rieger H. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PLoS One. 2013;8(8), e70395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011;63(8):623–39.

    Article  PubMed  CAS  Google Scholar 

  23. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zamecnik J. The extracellular space and matrix of gliomas. Acta Neuropathol. 2005;110(5):435–42.

    Article  PubMed  Google Scholar 

  25. Huijbers IJ, Iravani M, Popov S, Robertson D, Al-Sarraj S, Jones C, et al. A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One. 2010;5(3), e9808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sagnella SM, McCarroll JA, Kavallaris M. Drug delivery: beyond active tumour targeting. Nanomedicine. 2014;10(6):1131–7.

    CAS  PubMed  Google Scholar 

  27. Ernsting MJ, Hoang B, Lohse I, Undzys E, Cao P, Do T, et al. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle. J Control Release: Off J Control Release Soc. 2015;206:122–30.

    Article  CAS  Google Scholar 

  28. Baronzio G, Parmar G, Baronzio M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid. Front Oncol. 2015;5:165.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ji T, Ding Y, Zhao Y, Wang J, Qin H, Liu X, et al. Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery. Adv Mater. 2015;27(11):1865–73.

    Article  CAS  PubMed  Google Scholar 

  30. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.

    Article  CAS  PubMed  Google Scholar 

  31. Goodman TT, Olive PL, Pun SH. Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomedicine. 2007;2(2):265–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.

    Article  CAS  PubMed  Google Scholar 

  33. Tang L, Yang X, Yin Q, Cai K, Wang H, Chaudhury I, et al. Investigating the optimal size of anticancer nanomedicine. Proc Natl Acad Sci U S A. 2014;111(43):15344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kong G, Braun RD, Dewhirst MW. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 2001;61(7):3027–32.

    CAS  PubMed  Google Scholar 

  35. Chiarelli PA, Kievit FM, Zhang M, Ellenbogen RG. Bionanotechnology and the future of glioma. Surg Neurol Int. 2015;6 Suppl 1:S45–58.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release: Off J Control Release Soc. 2015;219:205–14.

    Article  CAS  Google Scholar 

  37. Popielarski SR, Pun SH, Davis ME. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 1. Synthesis and characterization. Bioconjug Chem. 2005;16(5):1063–70.

    Article  CAS  PubMed  Google Scholar 

  38. DeSouza LV, Matta A, Karim Z, Mukherjee J, Wang XS, Krakovska O, et al. Role of moesin in hyaluronan induced cell migration in glioblastoma multiforme. Mol Cancer. 2013;12:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim Y, Kumar S. CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol Cancer Res: MCR. 2014;12(10):1416–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4:2516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nagy N, Kuipers HF, Frymoyer AR, Ishak HD, Bollyky JB, Wight TN, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 2015;6:123.

    PubMed  PubMed Central  Google Scholar 

  42. Kultti A, Zhao C, Singha NC, Zimmerman S, Osgood RJ, Symons R, et al. Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. BioMed Res Int. 2014;2014:817613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pietras A, Katz AM, Ekstrom EJ, Wee B, Halliday JJ, Pitter KL, et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 2014;14(3):357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dreaden EC, Morton SW, Shopsowitz KE, Choi JH, Deng ZJ, Cho NJ, et al. Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano. 2014;8(8):8374–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wan L, Jiao J, Cui Y, Guo J, Han N, Di D, et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology. 2016;27(13):135102.

    Article  PubMed  Google Scholar 

  46. Natsuizaka M, Kinugasa H, Kagawa S, Whelan KA, Naganuma S, Subramanian H, et al. IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment. Am J Cancer Res. 2014;4(1):29–41.

    PubMed  PubMed Central  Google Scholar 

  47. Clavreul A, Guette C, Faguer R, Tetaud C, Boissard A, Lemaire L, et al. Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties. J Pathol. 2014;233(1):74–88.

    Article  CAS  PubMed  Google Scholar 

  48. Trylcova J, Busek P, Smetana Jr K, Balaziova E, Dvorankova B, Mifkova A, et al. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2015;36(8):5873–9.

    Article  CAS  Google Scholar 

  49. Madsen CD, Pedersen JT, Venning FA, Singh LB, Moeendarbary E, Charras G, et al. Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep. 2015;16(10):1394–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim JW, Evans C, Weidemann A, Takeda N, Lee YS, Stockmann C, et al. Loss of fibroblast HIF-1alpha accelerates tumorigenesis. Cancer Res. 2012;72(13):3187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abbas O, Richards JE, Mahalingam M. Fibroblast-activation protein: a single marker that confidently differentiates morpheaform/infiltrative basal cell carcinoma from desmoplastic trichoepithelioma. Mod Pathol: Off J US Can Acad Pathol, Inc. 2010;23(11):1535–43.

    Article  CAS  Google Scholar 

  52. Ji T, Zhao Y, Ding Y, Wang J, Zhao R, Lang J, et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer-associated fibroblast activation. Angew Chem. 2016;55(3):1050–5.

    Article  CAS  Google Scholar 

  53. Ben-Batalla I, Cubas-Cordova M, Udonta F, Wroblewski M, Waizenegger JS, Janning M, et al. Cyclooxygenase-2 blockade can improve efficacy of VEGF-targeting drugs. Oncotarget. 2015;6(8):6341–58.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li F, Zhu YT. HGF-activated colonic fibroblasts mediates carcinogenesis of colonic epithelial cancer cells via PKC-cMET-ERK1/2-COX-2 signaling. Cell Signal. 2015;27(4):860–6.

    Article  CAS  PubMed  Google Scholar 

  55. Kuchnio A, Moens S, Bruning U, Kuchnio K, Cruys B, Thienpont B, et al. The cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancer-associated fibroblasts. Cell Rep. 2015;12(6):992–1005.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, et al. Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation. Cell Rep. 2015;10(8):1335–48.

    Article  PubMed  CAS  Google Scholar 

  57. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A. 2011;108(6):2426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. He X, Li J, An S, Jiang C. pH-sensitive drug-delivery systems for tumor targeting. Ther Deliv. 2013;4(12):1499–510.

    Article  CAS  PubMed  Google Scholar 

  59. Ruan S, He Q, Gao H. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale. 2015;7(21):9487–96.

    Article  CAS  PubMed  Google Scholar 

  60. de Graaf AJ, Azevedo Prospero dos II S, Pieters EH, Rijkers DT, van Nostrum CF, Vermonden T, et al. A micelle-shedding thermosensitive hydrogel as sustained release formulation. J Control Release: Off J Control Release Soc. 2012;162(3):582–90.

    Article  CAS  Google Scholar 

  61. Li C, Madsen J, Armes SP, Lewis AL. A new class of biochemically degradable, stimulus-responsive triblock copolymer gelators. Angew Chem. 2006;45(21):3510–3.

    Article  CAS  Google Scholar 

  62. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007;7(12):3759–65.

    Article  CAS  PubMed  Google Scholar 

  63. Holden CA, Yuan Q, Yeudall WA, Lebman DA, Yang H. Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery. Int J Nanomedicine. 2010;5:25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mooney R, Weng Y, Garcia E, Bhojane S, Smith-Powell L, Kim SU, et al. Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy. J Control Release: Off J Control Release Soc. 2014;191:82–9.

    Article  CAS  Google Scholar 

  65. Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, et al. Hypoxia potentiates glioma-mediated immunosuppression. PLoS One. 2011;6(1), e16195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang SC, Hong JH, Hsueh C, Chiang CS. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Investig: J Tech Meth Pathol. 2012;92(1):151–62.

    Article  CAS  Google Scholar 

  67. Jiang PS, Yu CF, Yen CY, Woo CW, Lo SH, Huang YK, et al. Irradiation enhances the ability of monocytes as nanoparticle carrier for cancer therapy. PLoS One. 2015;10(9), e0139043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Huang WC, Chiang WH, Cheng YH, Lin WC, Yu CF, Yen CY, et al. Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials. 2015;71:71–83.

    Article  CAS  PubMed  Google Scholar 

  69. Aboody KS, Najbauer J, Metz MZ, D’Apuzzo M, Gutova M, Annala AJ, et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med. 2013;5(184):184ra59.

    Article  PubMed  CAS  Google Scholar 

  70. Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, et al. Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res: MCR. 2008;6(12):1819–29.

    Article  CAS  PubMed  Google Scholar 

  71. Ahmed AU, Tyler MA, Thaci B, Alexiades NG, Han Y, Ulasov IV, et al. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm. 2011;8(5):1559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Auffinger B, Morshed R, Tobias A, Cheng Y, Ahmed AU, Lesniak MS. Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma? Oncotarget. 2013;4(3):378–96.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kucharzewska P, Christianson HC, Belting M. Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS One. 2015;10(1), e0116740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chiche J, Brahimi-Horn MC, Pouyssegur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. 2010;14(4):771–94.

    Article  CAS  PubMed  Google Scholar 

  75. Adams DJ, Morgan LR. Tumor physiology and charge dynamics of anticancer drugs: implications for camptothecin-based drug development. Curr Med Chem. 2011;18(9):1367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 2006;66(10):5216–23.

    Article  CAS  PubMed  Google Scholar 

  77. Arachchige MC, Reshetnyak YK, Andreev OA. Advanced targeted nanomedicine. J Biotechnol. 2015;202:88–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release: Off J Control Release Soc. 2005;103(2):405–18.

    Article  CAS  Google Scholar 

  79. Gao GH, Park MJ, Li Y, Im GH, Kim JH, Kim HN, et al. The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials. 2012;33(35):9157–64.

    Article  CAS  PubMed  Google Scholar 

  80. Antosh MP, Wijesinghe DD, Shrestha S, Lanou R, Huang YH, Hasselbacher T, et al. Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc Natl Acad Sci U S A. 2015;112(17):5372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yao L, Daniels J, Moshnikova A, Kuznetsov S, Ahmed A, Engelman DM, et al. pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci U S A. 2013;110(2):465–70.

    Article  CAS  PubMed  Google Scholar 

  82. Yang YS, Carney RP, Stellacci F, Irvine DJ. Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes. ACS Nano. 2014;8(9):8992–9002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miladi I, Alric C, Dufort S, Mowat P, Dutour A, Mandon C, et al. The in vivo radiosensitizing effect of gold nanoparticles based mri contrast agents. Small. 2014.

  84. Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine. 2013;8(10):1601–9.

    Article  CAS  PubMed  Google Scholar 

  85. Jain S, Coulter JA, Butterworth KT, Hounsell AR, McMahon SJ, Hyland WB, et al. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2014;110(2):342–7.

    Article  CAS  Google Scholar 

  86. Poon Z, Chang D, Zhao X, Hammond PT. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano. 2011;5(6):4284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, et al. Multifunctional albumin-MnO(2) nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano. 2014;8(4):3202–12.

    Article  CAS  PubMed  Google Scholar 

  88. Lu W, Tan YZ, Hu KL, Jiang XG. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood–brain barrier. Int J Pharm. 2005;295(1–2):247–60.

    Article  CAS  PubMed  Google Scholar 

  89. Ye D, Raghnaill MN, Bramini M, Mahon E, Aberg C, Salvati A, et al. Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale. 2013;5(22):11153–65.

    Article  CAS  PubMed  Google Scholar 

  90. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114(8):1172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112(2):238–50.

    Article  CAS  PubMed  Google Scholar 

  92. Thambi T, Deepagan VG, Yoon HY, Han HS, Kim SH, Son S, et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials. 2014;35(5):1735–43.

    Article  CAS  PubMed  Google Scholar 

  93. Ahmad Z, Lv S, Tang Z, Shah A, Chen X. Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. J Biomater Scie Polymer Edn. 2015:1–34.

  94. Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. (1)(8)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39(5):760–70.

    Article  CAS  PubMed  Google Scholar 

  95. Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Practical Oncology and Radiotherapy: Journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology. 2010;15(6):176–80.

    Article  Google Scholar 

  96. Rahman WN, Corde S, Yagi N, Abdul Aziz SA, Annabell N, Geso M. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. Int J Nanomedicine. 2014;9:2459–67.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sharma R. Nitroimidazole radiopharmaceuticals in hypoxia: part II cytotoxicity and radiosensitization applications. Curr Radiopharm. 2011;4(4):379–93.

    Article  CAS  PubMed  Google Scholar 

  98. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–71.

    Article  CAS  PubMed  Google Scholar 

  99. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med: Off Publ, Soc Nucl Med. 2008;49 Suppl 2:129S–48S.

    Article  CAS  Google Scholar 

  100. Saunders ME, Dische S, Anderson P, Flockhart IR. The neurotoxicity of misonidazole and its relationship to dose, half-life and concentration in the serum. Br J Cancer Suppl. 1978;3:268–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sanzey M, Abdul Rahim SA, Oudin A, Dirkse A, Kaoma T, Vallar L, et al. Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma. PLoS One. 2015;10(5), e0123544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 2004;57(10):1009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Semenza GL. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell. 2004;5(5):405–6.

    Article  CAS  PubMed  Google Scholar 

  104. Womeldorff M, Gillespie D, Jensen RL. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma. Neurosurg Focus. 2014;37(6), E8.

    Article  PubMed  Google Scholar 

  105. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.

    Article  CAS  PubMed  Google Scholar 

  106. Chou CW, Wang CC, Wu CP, Lin YJ, Lee YC, Cheng YW, et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neuro-Oncology. 2012;14(10):1227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang L, Liu Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng. 2011;13:507–30.

    Article  CAS  PubMed  Google Scholar 

  108. Liu XQ, Xiong MH, Shu XT, Tang RZ, Wang J. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm. 2012;9(10):2863–74.

    Article  CAS  PubMed  Google Scholar 

  109. Chen Y, Xu G, Zheng Y, Yan M, Li Z, Zhou Y, et al. Nanoformulation of D-alpha-tocopheryl polyethylene glycol 1000 succinate-b-poly(epsilon-caprolactone-ran-glycolide) diblock copolymer for siRNA targeting HIF-1alpha for nasopharyngeal carcinoma therapy. Int J Nanomedicine. 2015;10:1375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Perche F, Biswas S, Wang T, Zhu L, Torchilin VP. Hypoxia-targeted siRNA delivery. Angew Chem. 2014;53(13):3362–6.

    Article  CAS  Google Scholar 

  111. Perche F, Biswas S, Patel NR, Torchilin VP. Hypoxia-responsive copolymer for siRNA delivery. Methods Mol Biol. 2016;1372:139–62.

    Article  PubMed  Google Scholar 

  112. Van De Putte M, Roskams T, Bormans G, Verbruggen A, De Witte PA. The impact of aggregation on the biodistribution of hypericin. Int J Oncol. 2006;28(3):655–60.

    Google Scholar 

  113. Li Y, Zhang J, Wang B, Shen Y, Ouahab A. Co-delivery of siRNA and hypericin into cancer cells by hyaluronic acid modified PLGA-PEI nanoparticles. Drug Dev Ind Pharm. 2016;42(5):737–46.

    Article  CAS  PubMed  Google Scholar 

  114. Mathupala SP, Guthikonda M, Sloan AE. RNAi based approaches to the treatment of malignant glioma. Technol Cancer Res Treat. 2006;5(3):261–9.

    CAS  PubMed  Google Scholar 

  115. Mathupala SP. Delivery of small-interfering RNA (siRNA) to the brain. Expert Opin Ther Patents. 2009;19(2):137–40.

    Article  CAS  Google Scholar 

  116. Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials. 2013;34(36):9220–6.

    Article  CAS  PubMed  Google Scholar 

  117. Kanazawa T, Morisaki K, Suzuki S, Takashima Y. Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles. Mol Pharm. 2014;11(5):1471–8.

    Article  CAS  PubMed  Google Scholar 

  118. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20(5):557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11(4):335–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, et al. Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst. 2001;93(17):1337–43.

    Article  CAS  PubMed  Google Scholar 

  121. Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001;158(3):905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Proescholdt MA, Merrill MJ, Stoerr EM, Lohmeier A, Pohl F, Brawanski A. Function of carbonic anhydrase IX in glioblastoma multiforme. Neuro-Oncology. 2012;14(11):1357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE. Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol. 1998;18(5):2845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    Article  CAS  PubMed  Google Scholar 

  125. Wojton J, Chu Z, Mathsyaraja H, Meisen WH, Denton N, Kwon CH, et al. Systemic delivery of SapC-DOPS has antiangiogenic and antitumor effects against glioblastoma. Mol Ther: J Am Soc Gene Ther. 2013;21(8):1517–25.

    Article  CAS  Google Scholar 

  126. Blanco VM, Chu Z, Vallabhapurapu SD, Sulaiman MK, Kendler A, Rixe O, et al. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors. Oncotarget. 2014;5(16):7105–18.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Blanco VM, Latif T, Chu Z, Qi X. Imaging and therapy of pancreatic cancer with phosphatidylserine-targeted nanovesicles. Transl Oncol. 2015;8(3):196–203.

    Article  PubMed  PubMed Central  Google Scholar 

  128. de Alba E, Weiler S, Tjandra N. Solution structure of human saposin C: pH-dependent interaction with phospholipid vesicles. Biochemistry. 2003;42(50):14729–40.

    Article  PubMed  CAS  Google Scholar 

  129. Winter PM, Pearce J, Chu Z, McPherson CM, Takigiku R, Lee JH, et al. Imaging of brain tumors with paramagnetic vesicles targeted to phosphatidylserine. J Magn Reson Imaging: JMRI. 2015;41(4):1079–87.

    Article  PubMed  Google Scholar 

  130. Qi X, Chu Z, Mahller YY, Stringer KF, Witte DP, Cripe TP. Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15(18):5840–51.

    Article  CAS  Google Scholar 

  131. He J, Yin Y, Luster TA, Watkins L, Thorpe PE. Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15(22):6871–80.

    Article  CAS  Google Scholar 

  132. Huang X, Bennett M, Thorpe PE. A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Res. 2005;65(10):4408–16.

    Article  CAS  PubMed  Google Scholar 

  133. Preston JE, Joan Abbott N, Begley DJ. Transcytosis of macromolecules at the blood–brain barrier. Adv Pharmacol. 2014;71:147–63.

    Article  CAS  PubMed  Google Scholar 

  134. Calzolari A, Larocca LM, Deaglio S, Finisguerra V, Boe A, Raggi C, et al. Transferrin receptor 2 is frequently and highly expressed in glioblastomas. Transl Oncol. 2010;3(2):123–34.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bertrand Y, Currie JC, Poirier J, Demeule M, Abulrob A, Fatehi D, et al. Influence of glioma tumour microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1. Br J Cancer. 2011;105(11):1697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Minchenko DO, Kharkova AP, Karbovskyi LL, Minchenko OH. Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress. Endocr Regul. 2015;49(2):73–83.

    Article  CAS  PubMed  Google Scholar 

  137. Perrone L, Peluso G, Melone MA. RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes. J Cell Physiol. 2008;217(1):60–71.

    Article  CAS  PubMed  Google Scholar 

  138. Tafani M, Di Vito M, Frati A, Pellegrini L, De Santis E, Sette G, et al. Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. J Neuroinflammation. 2011;8:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Riolfi M, Ferla R, Del Valle L, Pina-Oviedo S, Scolaro L, Micciolo R, et al. Leptin and its receptor are overexpressed in brain tumors and correlate with the degree of malignancy. Brain Pathol. 2010;20(2):481–9.

    Article  PubMed  CAS  Google Scholar 

  140. Koda M, Sulkowska M, Wincewicz A, Kanczuga-Koda L, Musiatowicz B, Szymanska M, et al. Expression of leptin, leptin receptor, and hypoxia-inducible factor 1 alpha in human endometrial cancer. Ann N Y Acad Sci. 2007;1095:90–8.

    Article  CAS  PubMed  Google Scholar 

  141. Koda M, Sulkowska M, Kanczuga-Koda L, Cascio S, Colucci G, Russo A, et al. Expression of the obesity hormone leptin and its receptor correlates with hypoxia-inducible factor-1 alpha in human colorectal cancer. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2007;18 Suppl 6:vi116–9.

    Google Scholar 

  142. Cascio S, Bartella V, Auriemma A, Johannes GJ, Russo A, Giordano A, et al. Mechanism of leptin expression in breast cancer cells: role of hypoxia-inducible factor-1alpha. Oncogene. 2008;27(4):540–7.

    Article  CAS  PubMed  Google Scholar 

  143. Tu H, Hsuchou H, Kastin AJ, Wu X, Pan W. Unique leptin trafficking by a tailless receptor. FASEB J: Off Publ Fed Am Soc Exp Biol. 2010;24(7):2281–91.

    Article  CAS  Google Scholar 

  144. Munoz-Najar UM, Neurath KM, Vumbaca F, Claffey KP. Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene. 2006;25(16):2379–92.

    Article  CAS  PubMed  Google Scholar 

  145. McFerrin MB, Sontheimer H. A role for ion channels in glioma cell invasion. Neuron Glia Biol. 2006;2(1):39–49.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine. 2015;10:4321–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett. 2011;585(23):3798–805.

    Article  CAS  PubMed  Google Scholar 

  148. Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int J Pharm. 2010;394(1–2):115–21.

    Article  CAS  PubMed  Google Scholar 

  149. Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2011;77(3):407–16.

    Article  CAS  Google Scholar 

  150. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release: Off J Control Release Soc. 2012;161(2):264–73.

    Article  CAS  Google Scholar 

  151. Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev. 2014;71:2–14.

    Article  CAS  PubMed  Google Scholar 

  152. Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine. 2015;11(6):1407–16.

    CAS  PubMed  Google Scholar 

  153. Thambi T, Son S, Lee DS, Park JH. Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomater. 2016;29:261–70.

    Article  CAS  PubMed  Google Scholar 

  154. Thambi T, You DG, Han HS, Deepagan VG, Jeon SM, Suh YD, et al. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv Healthc Mater. 2014;3(11):1829–38.

    Article  CAS  PubMed  Google Scholar 

  155. Sousa F, Mandal S, Garrovo C, Astolfo A, Bonifacio A, Latawiec D, et al. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale. 2010;2(12):2826–34.

    Article  CAS  PubMed  Google Scholar 

  156. Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol Pharm. 2014;11(4):1250–8.

    Article  CAS  PubMed  Google Scholar 

  157. Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 2008;25(1):55–71.

    Article  CAS  PubMed  Google Scholar 

  158. Minchin R. Nanomedicine: sizing up targets with nanoparticles. Nat Nanotechnol. 2008;3(1):12–3.

    Article  CAS  PubMed  Google Scholar 

  159. Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006;103(14):5567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sharma A, Muresanu DF, Patnaik R, Sharma HS. Size- and age-dependent neurotoxicity of engineered metal nanoparticles in rats. Mol Neurobiol. 2013;48(2):386–96.

    Article  CAS  PubMed  Google Scholar 

  161. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3(11):1941–9.

    Article  CAS  PubMed  Google Scholar 

  162. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–55.

    Article  CAS  PubMed  Google Scholar 

  163. Tamborini M, Locatelli E, Rasile M, Monaco I, Rodighiero S, Corradini I, et al. A combined approach employing chlorotoxin-nanovectors and low dose radiation to reach infiltrating tumor niches in glioblastoma. ACS Nano. 2016.

  164. Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target. 2004;12(9–10):635–41.

    Article  CAS  PubMed  Google Scholar 

  165. Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A. 1996;93(22):12349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sharma A, Straubinger NL, Straubinger RM. Modulation of human ovarian tumor cell sensitivity to N-(phosphonacetyl)-L-aspartate (PALA) by liposome drug carriers. Pharm Res. 1993;10(10):1434–41.

    Article  CAS  PubMed  Google Scholar 

  167. Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Eelease: Off J Control Release Soc. 2016.

  168. Yokel RA, Macphail RC. Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol. 2011;6:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncology. 2015;17 Suppl 2:ii3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Chaichana KL, Pinheiro L, Brem H. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv. 2015;6(3):353–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet. 1995;345(8956):1008–12.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the national fellowship program L’Oréal – Unesco „For Women in Science”, by a research grant of the Iuliu Hatieganu University of Medicine and Pharmacy in accordance to contract 1493/15/28.01.2014 and by two research grants of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project numbers PNII-RU-TE-2014-4-0225 (ENERGY) and PN-II-RU-TE-2014-4-2426 (NanoMED LeuKemist).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mihaela Aldea or Ioan Alexandru Florian.

Additional information

The authors Mihaela Aldea and Ioan Alexandru Florian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldea, M., Florian, I.A., Kacso, G. et al. Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma. Pharm Res 33, 2059–2077 (2016). https://doi.org/10.1007/s11095-016-1947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1947-8

KEY WORDS

Navigation