Skip to main content

Advertisement

Log in

Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Regulate the Disposition of Acacetin Glucuronides

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine the mechanism responsible for acacetin glucuronide transport and the bioavailability of acacetin.

Methods

Area under the curve (AUC), clearance (CL), half-life (T1/2) and other pharmacokinetic parameters were determined by the pharmacokinetic model. The excretion of acacetin glucuronides was evaluated by the mouse intestinal perfusion model and the Caco-2 cell model.

Results

In pharmacokinetic studies, the bioavailability of acacetin in FVB mice was 1.3%. Acacetin was mostly exposed as acacetin glucuronides in plasma. AUC of acacetin-7-glucuronide (Aca-7-Glu) was 2-fold and 6-fold higher in Bcrp1 (−/−) mice and Mrp2 (−/−) mice, respectively. AUC of acacetin-5-glucuronide (Aca-5-Glu) was 2-fold higher in Bcrp1 (−/−) mice. In mouse intestinal perfusion, the excretion of Aca-7-Glu was decreased by 1-fold and 2-fold in Bcrp1 (−/−) and Mrp2 (−/−) mice, respectively. In Caco-2 cells, the efflux rates of Aca-7-Glu and Aca-5-Glu were significantly decreased by breast cancer resistance protein (BCRP) inhibitor Ko143 and multidrug resistance protein 2 (MRP2) inhibitor LTC4. The use of these inhibitors markedly increased the intracellular acacetin glucuronide content.

Conclusions

BCRP and MRP2 regulated the in vivo disposition of acacetin glucuronides. The coupling of glucuronidation and efflux transport was probably the primary reason for the low bioavailability of acacetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP:

Apical

AUC:

Area under the curve

BCRP:

Breast cancer resistance protein

BL:

Basolateral

Cmax :

Maximum plasma concentration

CL:

Clearance

HBSS:

Hanks’ balanced salts

HPLC:

High performance liquid chromatography

HRMS:

High-resolution mass spectra

LLOQ:

Lower limit of quantification

MRP:

Multidrug resistance protein

MRT:

Mean residence time

T1/2 :

Half-life

UGT:

Uridine 5′-diphospho-glucuronosyltransferases

UHPLC-MS/MS:

Ultra high performance liquid chromatography/tandem mass spectrometry

UV:

Ultraviolet and visible spectrum

References

  1. Zhang L, Zuo Z, Lin G. Intestinal and hepatic glucuronidation of flavonoids. Mol Pharm. 2007;4(6):833–45.

    Article  CAS  PubMed  Google Scholar 

  2. Li W, Sun H, Zhang X, Wang H, Wu B. Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: the role of multidrug resistance-associated protein 4 (MRP4/ABCC4). Biochem Pharmacol. 2015;98(1):203–14.

    Article  CAS  PubMed  Google Scholar 

  3. Siissalo S, Laine L, Tolonen A, Kaukonen AM, Finel M, Hirvonen J. Caco-2 cell monolayers as a tool to study simultaneous phase II metabolism and metabolite efflux of indomethacin, paracetamol and 1-naphthol. Int J Pharm. 2010;383(1–2):24–9.

    Article  CAS  PubMed  Google Scholar 

  4. Xu H, Kulkarni KH, Singh R, Yang Z, Wang SW, Tam VH, et al. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharm. 2011;6(6):1703–15.

  5. Jiang W, Hu M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Adv. 2012;2(21):7948–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Dong D, Wang H, Ma Z, Wang Y, Wu B. Stable knockdown of efflux transporters leads to reduced glucuronidation in UGT1A1-overexpressing HeLa cells: the evidence for glucuronidation-transport interplay. Mol Pharm. 2015;12(4):1268–78.

    Article  CAS  PubMed  Google Scholar 

  7. Sesink AL, Arts IC, de Boer VC, Breedveld P, Schellens JH, Hollman PC, et al. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Mol Pharmacol. 2005;67(6):1999–2006.

    Article  CAS  PubMed  Google Scholar 

  8. Sakamoto S, Kusuhara H, Horie K, Takahashi K, Baba T, Ishizaki J, et al. Identification of the transporters involved in the hepatobiliary transport and intestinal efflux of methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate (S-8921) glucuronide, a pharmacologically active metabolite of S-8. Drug Metab Dispos. 2008;36(8):1553–61.

    Article  CAS  PubMed  Google Scholar 

  9. Jaiswal S, Sharma A, Shukla M, Vaghasiya K, Rangaraj N, Lal J. Novel pre-clinical methodologies for pharmacokinetic drug-drug interaction studies: spotlight on "humanized" animal models. Drug Metab Rev. 2014;46(4):475–93.

    Article  CAS  PubMed  Google Scholar 

  10. Mamidi RNVS, Dallas S, Sensenhauser C, Lim HK, Scheers E, Verboven P, et al. In vitro and PBPK based assessment of drug-drug interaction potential of canagliflozin. Brit J Clin Pharmaco. 2016

  11. Martinez-Vazquez M, Estrada-Reyes R, Martinez-Laurrabaquio A, Lopez-Rubalcava C, Heinze G. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: sedative effect and chemical analysis of an aqueous extract. J Ethnopharmacol. 2012;141(3):908–17.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang L, Fang G, Zhang Y, Cao G, Wang S. Analysis of flavonoids in propolis and Ginkgo biloba by micellar electrokinetic capillary chromatography. J Agric Food Chem. 2008;56(24):11571–7.

    Article  CAS  PubMed  Google Scholar 

  13. Bi C, Dong X, Zhong X, Cai H, Wang D, Wang L. Acacetin protects mice from Staphylococcus aureus bloodstream infection by inhibiting the activity of sortase A. Molecules. 2016;21(10):1285.

  14. Watanabe K, Kanno S, Tomizawa A, Yomogida S, Ishikawa M. Acacetin induces apoptosis in human T cell leukemia Jurkat cells via activation of a caspase cascade. Oncol Rep. 2012;27(1):204–9.

  15. Liu H, Wang YJ, Yang L, Zhou M, Jin MW, Xiao GS, et al. Synthesis of a highly water-soluble acacetin prodrug for treating experimental atrial fibrillation in beagle dogs. Sci Rep-UK. 2016;6:25743. 

  16. Huang WC, Liou CJ. Dietary acacetin reduces airway hyperresponsiveness and eosinophil infiltration by modulating eotaxin-1 and Th2 cytokines in a mouse model of asthma. Evid-based Compl Alt. 2012;2012(5):910520.

  17. Dai P, Luo F, Ying W, Jiang H, Wang L, Zhang G, et al. Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes. Biopharm Drug Dispos. 2015;36(9):622–35.

    Article  CAS  PubMed  Google Scholar 

  18. Li Q, Wang L, Dai P, Zeng X, Qi X, Zhu L, et al. A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5′-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats. J Chromatogr A. 2015;1395:116–28.

    Article  CAS  PubMed  Google Scholar 

  19. Dai P, Zhu L, Luo F, Lu L, Li Q, Wang L, et al. Triple recycling processes impact systemic and local bioavailability of orally administered flavonoids. AAPS J. 2015;17(3):723–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong EJ, Jia X, Hu M. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell models. Mol Pharm. 2005;2(4):319–28.

    Article  CAS  PubMed  Google Scholar 

  21. Tang L, Li Y, Chen WY, Zeng S, Dong LN, Peng XJ, et al. Breast cancer resistance protein-mediated efflux of luteolin glucuronides in HeLa cells overexpressing UDP-glucuronosyltransferase 1A9. Pharm Res. 2014;31(4):847–60.

    Article  CAS  PubMed  Google Scholar 

  22. Ye L, Lu L, Li Y, Zeng S, Yang X, Chen W, et al. Potential role of ATP-binding cassette transporters in the intestinal transport of rhein. Food Chem Toxicol. 2013;58(7):301–5.

  23. Liu W, Feng Q, Li Y, Ye L, Hu M, Liu Z. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Toxicol Appl Pharmacol. 2012;265(3):316–24.

    Article  CAS  PubMed  Google Scholar 

  24. Tang L, Ye L, Singh R, Wu B, Lv C, Zhao J, et al. Use of glucuronidation fingerprinting to describe and predict mono- and dihydroxyflavone metabolism by recombinant UGT isoforms and human intestinal and liver microsomes. Mol Pharm. 2010;7(3):664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawabata S, Oka M, Shiozawa K, Tsukamoto K, Nakatomi K, Soda H, et al. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Bioph Res Co. 2001;280(5):1216–23.

  26. Kalapos-Kovács B, Magda B, Jani M, Fekete Z, Szabó PT, Antal I, et al. Multiple ABC transporters efflux baicalin. Phytother Res. 2015;29(12):1987-90.

  27. Wind NS, Holen I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int J Breast Cancer. 2011;2011:967419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeong EJ, Liu X, Jia X, Chen J, Hu M. Coupling of conjugating enzymes and efflux transporters: impact on bioavailability and drug interactions. Curr Drug Metab. 2005;6(5):455–68.

    Article  CAS  PubMed  Google Scholar 

  29. Grant CE, Gao M, Degorter MK, Cole SP, Deeley RG. Structural determinants of substrate specificity differences between human multidrug resistance protein (MRP) 1 (ABCC1) and MRP3 (ABCC3). Drug Metab Dispos. 2008;36(12):2571–81.

  30. Hu M, Chen J, Lin H. Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharm Exp Ther. 2003;307(1):314–21.

    Article  CAS  Google Scholar 

  31. Tang L, Feng Q, Zhao J, Dong L, Liu W, Yang C, et al. Involvement of UDP-glucuronosyltranferases and sulfotransferases in the liver and intestinal first-pass metabolism of seven flavones in C57 mice and humans in vitro. Food Chem Toxicol. 2012;50(5):1460–7.

    Article  CAS  PubMed  Google Scholar 

  32. Sai Y. Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition. Drug Metab Pharmacokinet. 2005;20(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  33. Drozdzik M, Gröer C, Penski J, Lapczuk J, Ostrowski M, Lai Y, et al. Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine. Mol Pharm. 2014;11(10):3547–55.

  34. Quan E, Wang H, Dong D, Zhang X, Wu B. Characterization of Chrysin Glucuronidation in UGT1A1-overexpressing HeLa cells: elucidating the transporters responsible for efflux of glucuronide. Drug Metabol Dispos. 2015;43(4):433–43.

    Article  CAS  Google Scholar 

  35. Krilis S, Lewis RA, Corey EJ, Austen KF. Specific binding of leukotriene C4 to ileal segments and subcellular fractions of ileal smooth muscle cells. P Natl Acad Sci USA. 1984;81(14):4529–33.

  36. Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011;111(10):5866–98.

    Article  PubMed  Google Scholar 

  37. Zheng L, Zhu L, Zhao M, Shi J, Li Y, Yu J, et al. In Vivo exposure of Kaempferol is driven by phase II metabolic enzymes and efflux transporters. AAPS J. 2016;18(5):1289–99.

    Article  CAS  PubMed  Google Scholar 

  38. Nezasa K, Tian X, Zamek-Gliszczynski MJ, Patel NJ, Raub TJ, Brouwer KL. Altered hepatobiliary disposition of 5 (and 6)-carboxy-2′,7′-dichlorofluorescein in Abcg2 (Bcrp1) and Abcc2 (Mrp2) knockout mice. Drug Metab Dispos. 2006;34(4):718–23.

    Article  CAS  PubMed  Google Scholar 

  39. Chu XY, Strauss JR, Mariano MA, Li J, Newton DJ, Cai X, et al. Characterization of mice lacking the multidrug resistance protein MRP2 (ABCC2). J Pharmacol Exp The. 2006;317(2):579–89.

    Article  CAS  Google Scholar 

  40. Alnouti Y, Klaassen CD. Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicol Sci. 2006;93(2):242–55.

    Article  CAS  PubMed  Google Scholar 

  41. Prime-Chapman HM. Differential multidrug resistance-associated protein 1 through 6 isoform expression and function in human intestinal epithelial Caco-2 cells. J Pharmacol Exp Ther. 2004;311(2):476–84.

  42. Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Met. 2013;9(3):237–52.

    Article  CAS  Google Scholar 

  43. Natarajan K, Yi X, Nakanishi T, Beck WT, Bauer KS, Ross DD. Identification and characterization of the major alternative promoter regulating Bcrp1/Abcg2 expression in the mouse intestine. Biochim Biophys Acta. 2011;1809(7):295–305.

  44. Zimmermann C, van de Wetering K, van de Steeg E, Wagenaar E, Vens C, Schinkel AH. Species-dependent transport and modulation properties of human and mouse multidrug resistance protein 2 (MRP2/Mrp2, ABCC2/Abcc2). Drug Metab Dispos 2008;36(4):631–40.

Download references

Acknowledgments and Disclosures

This work was supported by the grants of Key International Joint Research Project of National Natural Science Foundation of China (81120108025), Science and Technology Project of Guangzhou City (201509010004), and Guangdong Natural Science Foundation (2015AD030312012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Zhu or Zhongqiu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Yu, J., Zheng, H. et al. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Regulate the Disposition of Acacetin Glucuronides. Pharm Res 34, 1402–1415 (2017). https://doi.org/10.1007/s11095-017-2157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2157-8

KEY WORDS

Navigation