Skip to main content

Advertisement

Log in

An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Three-dimensional printing (3DP) is a rapidly growing additive manufacturing process and it is predicted that the technology will transform the production of goods across numerous fields. In the pharmaceutical sector, 3DP has been used to develop complex dosage forms of different sizes and structures, dose variations, dose combinations and release characteristics, not possible to produce using traditional manufacturing methods. However, the technology has mainly been focused on polymer-based systems and currently, limited information is available about the potential opportunities for the 3DP of soft materials such as lipids.

Methods

This review paper emphasises the most commonly used 3DP technologies for soft materials such as inkjet printing, binder jetting, selective laser sintering (SLS), stereolithography (SLA), fused deposition modeling (FDM) and semi-solid extrusion, with the current status of these technologies for soft materials in biological, food and pharmaceutical applications.

Result

The advantages of 3DP, particularly in the pharmaceutical field, are highlighted and an insight is provided about the current studies for lipid-based drug delivery systems evaluating the potential of 3DP to fabricate innovative products. Additionally, the challenges of the 3DP technologies associated with technical processing, regulatory and material issues of lipids are discussed in detail.

Conclusion

The future utility of 3DP for printing soft materials, particularly for lipid-based drug delivery systems, offers great advantages and the technology will potentially support patient compliance and drug effectiveness via a personalised medicine approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–53.

    CAS  PubMed  Google Scholar 

  2. Hull CW. Apparatus for production of three-dimensional objects by stereolithography. In.: Google Patents; 1986.

  3. Deckard CR. Method and apparatus for producing parts by selective sintering. In.: Google Patents; 1989.

  4. Sachs EM, Haggerty JS, Cima MJ, Williams PA. Three dimensional printing techniques. 1993(U.S. Patent 5,204,055).

  5. Basit AW, Gaisford S. 3D Printing of Pharmaceuticals: Springer International Publishing; 2018.

  6. Kruth JP, Leu MC, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Ann. 1998;47(2):525–40.

    Google Scholar 

  7. Dolenc A, Mäkelä I. Slicing procedures for layered manufacturing techniques. Comput Aided Des. 1994;26(2):119–26.

    Google Scholar 

  8. Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc. 2013;53(2):136–44.

    Google Scholar 

  9. Lipson H. New world of 3-D printing offers" completely new ways of thinking": Q&A with author, engineer, and 3-D printing expert Hod Lipson. IEEE Pulse. 2013;4(6):12–4.

    PubMed  Google Scholar 

  10. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51.

    CAS  PubMed  Google Scholar 

  11. Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019–31.

    CAS  PubMed  Google Scholar 

  12. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm. 2018;548(1):586–96.

    CAS  PubMed  Google Scholar 

  13. Duda T, Raghavan LV. 3D Metal printing technology. IFAC-PapersOnLine. 2016;49(29):103–10.

    Google Scholar 

  14. Murr LE, Johnson WL. 3D metal droplet printing development and advanced materials additive manufacturing. J Mater Res Technol. 2017;6(1):77–89.

    CAS  Google Scholar 

  15. Chung P, Heller JA, Etemadi M, Ottoson PE, Liu JA, Rand L, et al. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding. J Vis Exp: JoVE. 2014;88:–e51745.

  16. Dombroski CE, Balsdon ME, Froats A. The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC Res Notes. 2014;7(1):443.

    PubMed  PubMed Central  Google Scholar 

  17. Water JJ, Bohr A, Boetker J, Aho J, Sandler N, Nielsen HM, et al. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci. 2015;104(3):1099–107.

    CAS  PubMed  Google Scholar 

  18. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. TRENDS in Biotechnology. 2003;21(4):157–61.

    CAS  PubMed  Google Scholar 

  19. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521–9.

    CAS  PubMed  Google Scholar 

  20. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim C-H. 3-dimensional bioprinting for tissue engineering applications. Biomaterials Res. 2016;20(1):12.

    Google Scholar 

  21. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1(9):910–7.

    CAS  PubMed  Google Scholar 

  22. Pati F, Shim J-H, Lee J-S, Cho D-W. 3D printing of cell-laden constructs for heterogeneous tissue regeneration. Manufacturing Letters. 2013;1(1):49–53.

    CAS  Google Scholar 

  23. Lipton J, Arnold D, Nigl F, Lopez N, Cohen D, Norén N, Lipson H. Multi-material food printing with complex internal structure suitable for conventional post-processing. 2010.

    Google Scholar 

  24. Sun J, Peng Z, Zhou W, Fuh JYH, Hong GS, Chiu A. A review on 3D Printing for Customized Food Fabrication. Procedia Manufacturing. 2015;1:308–19.

    Google Scholar 

  25. Yang F, Zhang M, Bhandari B. Recent development in 3D food printing. Crit Rev Food Sci Nutr. 2017;57(14):3145–53.

    PubMed  Google Scholar 

  26. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547–55.

    CAS  PubMed  Google Scholar 

  27. Yu DG, Zhu L-M, Branford-White CJ, Yang XL. Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci. 2008;97(9):3666–90.

    CAS  PubMed  Google Scholar 

  28. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–50.

    CAS  PubMed  Google Scholar 

  29. Huang W, Zheng Q, Sun W, Xu H, Yang X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1-2):33–8.

    CAS  PubMed  Google Scholar 

  30. Wu W, Zheng Q, Guo X, Sun J, Liu Y. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater. 2009;4(6):065005.

    PubMed  Google Scholar 

  31. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1):161–70.

    CAS  PubMed  Google Scholar 

  32. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1):105–11.

    CAS  PubMed  Google Scholar 

  33. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101–7.

    CAS  PubMed  Google Scholar 

  34. Goyanes A, Martinez PR, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63.

    CAS  PubMed  Google Scholar 

  35. Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1-2):88–92.

    CAS  PubMed  Google Scholar 

  36. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–14.

    CAS  PubMed  Google Scholar 

  37. Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568–77.

    CAS  PubMed  Google Scholar 

  38. Zhang J, Vo AQ, Feng X, Bandari S, Repka MA. Pharmaceutical additive manufacturing: a novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech. 2018.

  39. Sandler N, Preis M. Printed drug-delivery systems for improved patient treatment. Trends Pharmacol Sci. 2017;38(3):317.

    CAS  PubMed  Google Scholar 

  40. Aprecia. FDA approves the first 3D printed drug product. https://www.apreciacom/pdf/2015_08_03_Spritam_FDA_Approval_Press_Releasepdf. 2015.

  41. Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.

    CAS  PubMed  Google Scholar 

  42. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231.

    CAS  PubMed  Google Scholar 

  43. Madla CM, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. 3D printing technologies, implementation and regulation: an overview. In: Basit AW, Gaisford S, editors. 3D Printing of Pharmaceuticals. Cham: Springer International Publishing; 2018. p. 21-40.

  44. Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceutics–a review of research and manufacturing. Int J Pharm. 2015;494(2):554–67.

    CAS  PubMed  Google Scholar 

  45. Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R, Ashcroft I, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release. 2017;261:207–15.

    CAS  PubMed  Google Scholar 

  46. Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96(9):2446–56.

    CAS  PubMed  Google Scholar 

  47. Yu D-G, Branford-White C, Ma Z-H, Zhu L-M, Li X-Y, Yang X-L. Novel drug delivery devices for providing linear release profiles fabricated by 3DP. J Pharm Sci. 2009;370(1-2):160–6.

    CAS  Google Scholar 

  48. Rowe C, Katstra W, Palazzolo R, Giritlioglu B, Teung P, Cima M. Multimechanism oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):11–7.

    CAS  PubMed  Google Scholar 

  49. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285–93.

    CAS  PubMed  Google Scholar 

  50. Fina F, Gaisford S, Basit AW. Powder bed fusion: the working process, current applications and opportunities. In: Basit AW, Gaisford S, editors. 3D Printing of Pharmaceuticals. Cham: Springer International Publishing; 2018. p. 81-105.

  51. Leong K, Phua K, Chua C, Du Z, Teo K. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H J Eng Med. 2001;215(2):191–2.

    CAS  Google Scholar 

  52. Low K, Leong K, Chua C, Du Z, Cheah C. Characterization of SLS parts for drug delivery devices. Rapid Prototyp J. 2001;7(5):262–8.

    Google Scholar 

  53. Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313–7.

    CAS  PubMed  Google Scholar 

  54. Chockalingam K, Jawahar N, Chandrasekhar U. Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp J. 2006;12(2):106–13.

    Google Scholar 

  55. Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1):144–52.

    CAS  PubMed  Google Scholar 

  56. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    CAS  PubMed  Google Scholar 

  57. Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, et al. Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int J Pharm. 2014;459(1-2):62–4.

    CAS  PubMed  Google Scholar 

  58. Moulton SE, Wallace GG. 3-dimensional (3D) fabricated polymer based drug delivery systems. J Control Release. 2014;193:27–34.

    CAS  PubMed  Google Scholar 

  59. Cooley PW, Wallace DB, Antohe BV. Applications of ink-jet printing technology to BioMEMS and microfluidic systems. In: Microfluidics and BioMEMS: international society for optics and photonics; 2001. p. 177–89.

    Google Scholar 

  60. Sumerel J, Lewis J, Doraiswamy A, Deravi LF, Sewell SL, Gerdon AE, et al. Piezoelectric ink jet processing of materials for medicaland biological applications. Biotechnol J. 2006;1(9):976–87.

    CAS  PubMed  Google Scholar 

  61. Alomari M, Vuddanda PR, Trenfield SJ, Dodoo CC, Velaga S, Basit AW, et al. Printing T3 and T4 oral drug combinations as a novel strategy for hypothyroidism. Int J Pharm. 2018;549(1-2):363–9.

    CAS  PubMed  Google Scholar 

  62. Vuddanda PR, Alomari M, Dodoo CC, Trenfield SJ, Velaga S, Basit AW, et al. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci. 2018;117:80–7.

    CAS  PubMed  Google Scholar 

  63. Sandler N, Määttänen A, Ihalainen P, Kronberg L, Meierjohann A, Viitala T, et al. Inkjet printing of drug substances and use of porous substrates-towards individualized dosing. J Pharm Sci. 2011;100(8):3386–95.

    CAS  PubMed  Google Scholar 

  64. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156(2):179–85.

    CAS  PubMed  Google Scholar 

  65. Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93–100.

    CAS  PubMed  Google Scholar 

  66. Zhu Q, Toth SJ, Simpson GJ, Hsu H-Y, Taylor LS, Harris MT. Crystallization and dissolution behavior of naproxen/polyethylene glycol solid dispersions. J Phys Chem B. 2013;117(5):1494–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Içten E, Giridhar A, Taylor LS, Nagy ZK, Reklaitis GV. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. J Pharm Sci. 2015;104(5):1641–9.

    PubMed  Google Scholar 

  68. Buanz AB, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28(10):2386.

    CAS  PubMed  Google Scholar 

  69. Varan C, Wickström H, Sandler N, Aktaş Y, Bilensoy E. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int J Pharm. 2017;531(2):701–13.

    CAS  PubMed  Google Scholar 

  70. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74(2):782–8.

    PubMed  Google Scholar 

  71. Katstra W, Palazzolo R, Rowe C, Giritlioglu B, Teung P, Cima M. Oral dosage forms fabricated by Three Dimensional Printing™. J Control Release. 2000;66(1):1–9.

    CAS  PubMed  Google Scholar 

  72. Alhnan MA, Okwuosa TC, Sadia M, Wan K-W, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.

    CAS  PubMed  Google Scholar 

  73. McMains S. Layered manufacturing technologies. Commun ACM. 2005;48(6):50–6.

    Google Scholar 

  74. Patirupanusara P, Suwanpreuk W, Rubkumintara T, Suwanprateeb J. Effect of binder content on the material properties of polymethyl methacrylate fabricated by three dimensional printing technique. J Mater Process Technol. 2008;207(1-3):40–5.

    CAS  Google Scholar 

  75. Jacob J, Coyle N, West TG, Monkhouse DC, Suprenant HL, Jain NB. Rapid disperse dosage form containing levetiracetam. 2014 (WO2014144512 A1).

  76. Yu D-G, Branford-White C, Yang Y-C, Zhu L-M, Welbeck EW, Yang X-L. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35(12):1530–6.

    CAS  PubMed  Google Scholar 

  77. Wu W, Zheng Q, Guo X, Huang W. The controlled-releasing drug implant based on the three dimensional printing technology: Fabrication and properties of drug releasing in vivo. J Wuhan Univ Technol Mat Sci Edit. 2009;24(6):977.

    CAS  Google Scholar 

  78. Wendel B, Rietzel D, Kühnlein F, Feulner R, Hülder G, Schmachtenberg E. Additive processing of polymers. Macromol Mater Eng. 2008;293(10):799–809.

    CAS  Google Scholar 

  79. Tan K, Chua C, Leong K, Cheah C, Cheang P, Bakar MA, et al. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials. 2003;24(18):3115–23.

    CAS  PubMed  Google Scholar 

  80. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27.

    CAS  PubMed  Google Scholar 

  81. Bertrand P, Bayle F, Combe C, Gœuriot P, Smurov I. Ceramic components manufacturing by selective laser sintering. Appl Surf Sci. 2007;254(4):989–92.

    CAS  Google Scholar 

  82. Rombouts M, Kruth J-P, Froyen L, Mercelis P. Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann Manuf Technol. 2006;55(1):187–92.

    Google Scholar 

  83. Robles Martinez P, Basit AW, Gaisford S. The history, developments and opportunities of stereolithography. In: Basit AW, Gaisford S, editors. 3D Printing of Pharmaceuticals. Cham: Springer International Publishing; 2018. p. 55-79.

  84. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121–30.

    CAS  PubMed  Google Scholar 

  85. Lan PX, Lee JW, Seol Y-J, Cho D-W. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med. 2009;20(1):271–9.

    CAS  PubMed  Google Scholar 

  86. Chia HN. Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.

    PubMed  PubMed Central  Google Scholar 

  87. Arcaute K, Mann B, Wicker R. Stereolithography of spatially controlled multi-material bioactive poly (ethylene glycol) scaffolds. Acta Biomater. 2010;6(3):1047–54.

    CAS  PubMed  Google Scholar 

  88. Arcaute K, Mann BK, Wicker RB. Stereolithography of three-dimensional bioactive poly (ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng. 2006;34(9):1429–41.

    PubMed  Google Scholar 

  89. Kim J-H, Lee JW, Yun W-S. Fabrication and tissue engineering application of a 3D PPF/DEF scaffold using Blu-ray based 3D printing system. J Mech Sci Technol. 2017;31(5):2581–7.

    Google Scholar 

  90. Lee S-J, Zhu W, Heyburn L, Nowicki M, Harris B, Zhang LG. Development of novel 3-D printed scaffolds with core-shell nanoparticles for nerve regeneration. IEEE Trans Biomed Eng. 2017;64(2):408–18.

    PubMed  Google Scholar 

  91. Popov V, Evseev A, Ivanov A, Roginski V, Volozhin A, Howdle S. Laser stereolithography and supercritical fluid processing for custom-designed implant fabrication. J Mater Sci Mater Med. 2004;15(2):123–8.

    CAS  PubMed  Google Scholar 

  92. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–8.

    CAS  PubMed  Google Scholar 

  93. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1):207–12.

    CAS  PubMed  Google Scholar 

  94. Martinez PR, Goyanes A, Basit AW, Gaisford S. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-Printed tablets. AAPS PharmSciTech. 2018.

  95. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, et al. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349–52.

    CAS  PubMed  Google Scholar 

  96. Pham DT, Gault RS. A comparison of rapid prototyping technologies. Int J Mach Tools Manuf. 1998;38(10-11):1257–87.

    Google Scholar 

  97. Waldbaur A, Rapp H, Laenge K, Rapp BE. Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods. 2011;3(12):2681–716.

    CAS  Google Scholar 

  98. Ziemian C, Crawn P III. Computer aided decision support for fused deposition modeling. Rapid Prototyping Journal. 2001;7(3):138–47.

    Google Scholar 

  99. Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016;514(1):290–5.

    CAS  PubMed  Google Scholar 

  100. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1):21–30.

    CAS  PubMed  Google Scholar 

  101. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.

    CAS  PubMed  Google Scholar 

  102. Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur J Pharm Sci. 2018;118:134–43.

    CAS  PubMed  Google Scholar 

  103. Goyanes A, Fernandez-Ferreiro A, Majeed A, Gomez-Lado N, Awad A, Luaces-Rodriguez A, et al. PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int J Pharm. 2018;536(1):158–64.

    CAS  PubMed  Google Scholar 

  104. Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J Control Release. 2017;268:40–8.

    CAS  PubMed  Google Scholar 

  105. Firth J, Basit AW, Gaisford S. The role of semi-solid extrusion printing in clinical practice. In: Basit AW, Gaisford S, editors. 3D Printing of Pharmaceuticals. Cham: Springer International Publishing; 2018. p. 133-151.

  106. Rattanakit P, Moulton SE, Santiago KS, Liawruangrath S, Wallace GG. Extrusion printed polymer structures: A facile and versatile approach to tailored drug delivery platforms. International journal of pharmaceutics. 2012;422(1-2):254–63.

    CAS  PubMed  Google Scholar 

  107. Richards DJ, Tan Y, Jia J, Yao H, Mei Y. 3D printing for tissue engineering. Isr J Chem. 2013;53(9-10):805–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773.

    CAS  PubMed  Google Scholar 

  109. Khaled SA, Alexander MR, Wildman RD, Wallace MJ, Sharpe S, Yoo J, et al. 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int J Pharm. 2018;538(1):223–30.

    CAS  PubMed  Google Scholar 

  110. Lee BK, Yun YH, Choi JS, Choi YC, Kim JD, Cho YW. Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system. Int J Pharm. 2012;427(2):305–10.

    CAS  PubMed  Google Scholar 

  111. Tarcha PJ, Verlee D, Hui HW, Setesak J, Antohe B, Radulescu D, et al. The application of ink-jet technology for the coating and loading of drug-eluting stents. Ann Biomed Eng. 2007;35(10):1791–9.

    PubMed  Google Scholar 

  112. Gu Y, Chen X, Lee J-H, Monteiro DA, Wang H, Lee WY. Inkjet printed antibiotic- and calcium-eluting bioresorbable nanocomposite micropatterns for orthopedic implants. Acta Biomater. 2012;8(1):424–31.

    CAS  PubMed  Google Scholar 

  113. Gbureck U, Vorndran E, Müller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007;122(2):173–80.

    CAS  PubMed  Google Scholar 

  114. Cheah C, Leong K, Chua C, Low K, Quek H. Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H J Eng Med. 2002;216(6):369–83.

    CAS  Google Scholar 

  115. Trenfield SJ, Goyanes A, Telford R, Wilsdon D, Rowland M, Gaisford S, et al. 3D printed drug products: Non-destructive dose verification using a rapid point-and-shoot approach. Int J Pharma. 2018;549(1):283–92.

    CAS  Google Scholar 

  116. Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, et al. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018;547(1-2):44–52.

    CAS  PubMed  Google Scholar 

  117. Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Delivery Sci Technol. 2015;30:360–7.

    CAS  Google Scholar 

  118. Goyanes A, Scarpa M, Kamlow M, Gaisford S, Basit AW, Orlu M. Patient acceptability of 3D printed medicines. Int J Pharm. 2017;530(1-2):71–8.

    CAS  PubMed  Google Scholar 

  119. Beck R, Chaves P, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M, et al. 3D Printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int J Pharma. 2017;528(1-2):268–79.

    CAS  Google Scholar 

  120. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7.

    CAS  PubMed  Google Scholar 

  121. Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharma. 2016;513(1-2):659–68.

    CAS  Google Scholar 

  122. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53–63.

    CAS  PubMed  Google Scholar 

  123. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharma. 2015;496(2):414–20.

    CAS  Google Scholar 

  124. Godoi FC, Prakash S, Bhandari BR. 3d printing technologies applied for food design: Status and prospects. J Food Eng. 2016;179:44–54.

    Google Scholar 

  125. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.

    CAS  PubMed  Google Scholar 

  126. Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery—ready for prime time? World Neurosurg. 2013;80(3):233–5.

    PubMed  Google Scholar 

  127. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today. 2013;16(12):496–504.

    CAS  Google Scholar 

  128. Wu G-H, Hsu S-h. Polymeric-based 3D printing for tissue engineering. Journal of Medical and Biological Engineering. 2015;35(3):285–92.

    PubMed  PubMed Central  Google Scholar 

  129. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Police Sci Manag. 2011;2011:19.

    Google Scholar 

  130. Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med. 2014;20(8):857.

    CAS  PubMed  Google Scholar 

  131. Hsieh F-Y, Hsu S-h. 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis. 2015;11(4):153–8.

    PubMed  PubMed Central  Google Scholar 

  132. Mazzoli A, Ferretti C, Gigante A, Salvolini E, Mattioli-Belmonte M. Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering. Rapid Prototyp J. 2015;21(4):386–92.

    Google Scholar 

  133. Lee JW, Ahn G, Kim DS, Cho D-W. Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron Eng. 2009;86(4-6):1465–7.

    CAS  Google Scholar 

  134. Sanjana NE, Fuller SB. A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods. 2004;136(2):151–63.

    PubMed  Google Scholar 

  135. Irvine SA, Agrawal A, Lee BH, Chua HY, Low KY, Lau BC, et al. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices. 2015;17(1):16.

    PubMed  PubMed Central  Google Scholar 

  136. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27(19):3580–8.

    CAS  PubMed  Google Scholar 

  137. Pati F, Ha D-H, Jang J, Han HH, Rhie J-W, Cho D-W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164–75.

    CAS  PubMed  Google Scholar 

  138. Du Y, Liu H, Shuang J, Wang J, Ma J, Zhang S. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf B Biointerfaces. 2015;135:81–9.

    CAS  PubMed  Google Scholar 

  139. Chen C-H, Lee M-Y, Shyu VB-H, Chen Y-C, Chen C-T, Chen J-P. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering. Mater Sci Eng C. 2014;40:389–97.

    CAS  Google Scholar 

  140. Wiria FE, Leong KF, Chua CK, Liu Y. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007;3(1):1–12.

    CAS  PubMed  Google Scholar 

  141. Neiman JAS, Raman R, Chan V, Rhoads MG, Raredon MSB, Velazquez JJ, et al. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol Bioeng. 2015;112(4):777–87.

    CAS  PubMed  Google Scholar 

  142. Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip. 2010;10(16):2062–70.

    CAS  PubMed  Google Scholar 

  143. Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater. 2011;7(11):3850–6.

    CAS  PubMed  Google Scholar 

  144. Seck TM, Melchels FPW, Feijen J, Grijpma DW. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins. J Control Release. 2010;148(1):34–41.

    CAS  PubMed  Google Scholar 

  145. Hatton GB, Madla CM, Gaisford S, Basit AW. Medical applications of 3D Printing. In: Basit AW, Gaisford S, editors. 3D Printing of Pharmaceuticals. Cham: Springer International Publishing; 2018. p. 163-182.

  146. Gray N. Looking to the future: creating novel foods using 3D printing. In. http://www.foodnavigator.com/Science-Nutrition/Looking-to-the-future-Creating-novel-foods-using-3Dprinting.; 2010.

  147. Michail N. Biozoon's 3D printed smooth foods target Europe's elderly. In. https://www.foodnavigator.com/Article/2016/09/26/Biozoon-s-3D-printed-smooth-foods-target-Europe-s-elderly?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright; 2016.

  148. Serizawa R, Shitara M, Gong J, Makino M, Kabir MH, Furukawa H. 3D jet printer of edible gels for food creation. In.SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring: SPIE; 2014. p. 6.

  149. Gohd C. NASA Astronauts Can Now 3D-Print Pizzas in Space. In. https://futurism.com/nasa-astronauts-can-now-3d-print-pizzas-in-space/; 2017.

  150. Grood JPW, Grood, P.J. Method and Device for Dispensing a Liquid. 2011;Google Patents.

  151. Von Hasseln KW, Von Hasseln EM, Williams DX, Gale RR. Making an edible component, comprises depositing successive layers of food material according to digital data that describes the edible component, and applying edible binders to regions of the successive layers of the food material. In: 3d Systems Inc (Thde-C) 3d Systems Inc (Thde-C); 2014.

    Google Scholar 

  152. Diaz JV, Noort MWJ, Van BKJC. Method for the production of an edible object by powder bed (3d) printing and food products obtainable therewith. In: Google Patents; 2015.

    Google Scholar 

  153. Lab S. 3D Systems: 3D Systems acquires the Sugar Lab. In: http://www.3dsystems.com/de/press-releases/3d-systems-acquiressugar-lab, editor. Accessed 22 Dec 2014; 2013.

  154. Diaz JV, Van Bommel, K.J.C., Noort, M.W., Henket, J., Brier, P., 2014b. . Preparing Edible Product, Preferably Food Product Including Bakery Product, and Confectionary Product, Involves Providing Edible Powder Composition, and Subjecting Composition to Selective Laser Sintering. . Nederlandse Org Toegepast Natuurwetensch (Nede-C). 2014.

  155. Diaz JV, Van BKJC, Noort MWJ, Henket J, Brier P. Method for the production of edible objects using sls and food products. In: Google Patents; 2014.

    Google Scholar 

  156. Periard D, Schaal N, Schaal M, Malone E, Lipson H. Printing food. 2007.

    Google Scholar 

  157. Van der Linden D. 3D Food printing creating shapes and textures. 2015.

    Google Scholar 

  158. Hao L, Seaman O, Mellor S, Henderson J, Sewell N, Sloan M. Extrusion behavior of chocolate for additive layer manufacturing; 2010.

  159. Cohen DL, Lipton JI, Cutler M, Coulter D, Vesco A, Lipson H. Hydrocolloid printing: a novel platform for customized food production. 2009.

    Google Scholar 

  160. Melander A. Influence of food on the bioavailability of drugs. Clinical pharmacokinetics. 1978;3(5):337–51.

    CAS  PubMed  Google Scholar 

  161. Liang K, Carmone S, Brambilla D, Leroux J-C. 3D printing of a wearable personalized oral delivery device: A first-in-human study. Sci Adv. 2018;4(5):eaat2544.

    PubMed  PubMed Central  Google Scholar 

  162. Cima LG, Cima MJ. Preparation of medical devices by solid free-form fabrication methods. In.: Google Patents; 1996.

  163. Santini JT Jr, Cima MJ, Langer R. A controlled-release microchip. Nature. 1999;397(6717):335.

    CAS  PubMed  Google Scholar 

  164. Monkhouse D, Yoo J, Sherwood JK, Cima MJ, Bornancini E. Dosage forms exhibiting multi-phasic release kinetics and methods of manufacture thereof. In.: Google Patents; 2001.

  165. Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–84.

    CAS  PubMed  Google Scholar 

  166. HA P, Yuxin T, Justin H, JB N. Programming of multicomponent temporal release profiles in 3D printed polypills via core–shell, multilayer, and gradient concentration profiles. Adv Healthc Mater. 0(0):1800213.

  167. Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1-2):325–32.

    CAS  PubMed  Google Scholar 

  168. Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release. 2017;268:10–8.

    CAS  PubMed  Google Scholar 

  169. Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34(2):427–37.

    CAS  PubMed  Google Scholar 

  170. Amidon GL, Lennernas H, Shah VP. Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    CAS  PubMed  Google Scholar 

  171. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19(7):921–5.

    CAS  PubMed  Google Scholar 

  172. Mu H, Holm R, Mullertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215–24.

    CAS  PubMed  Google Scholar 

  173. Vithani K, Hawley A, Jannin V, Pouton C, Boyd BJ. Solubilisation behaviour of poorly water-soluble drugs during digestion of solid SMEDDS. Eur J Pharm Biopharm. 2018;130:236–46.

    CAS  PubMed  Google Scholar 

  174. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 2000;11:S93–8.

    CAS  PubMed  Google Scholar 

  175. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3):278–87.

    CAS  PubMed  Google Scholar 

  176. Içten E, Purohit HS, Wallace C, Giridhar A, Taylor LS, Nagy ZK, et al. Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems. Int J Pharm. 2017;524(1):424–32.

    PubMed  Google Scholar 

  177. Vithani K, Goyanes A, Jannin V, Basit AW, Gaisford S, Boyd BJ. Novel 3D Printed Lipid-based Dose Forms – Preparing Solid SMEDDS without a Solid-Phase Carrier and Impact of Geometry on Performance. Unpublished data

  178. Sparrow N. FDA tackles opportunities, challenges of 3D-printed medical devices. In. In. Plastics today: Medicine; 2014.

  179. Administration UFaD. Technical considerations for additive manufactured medical devices -draft guidance for industry and food and drug administration staff. In. https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM499809.pdf; 2016.

Download references

Acknowledgments and Disclosures

This review was funded in part by the Australian Research Council under the Discovery Projects scheme (grant DP160102906). Vincent Jannin is an employee of Gattefossé, France. The author would like to thank Gattefossé, France, for supporting the Ph.D. study of Kapilkumar Vithani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben J. Boyd.

Additional information

Guest Editor: Dennis Douroumis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vithani, K., Goyanes, A., Jannin, V. et al. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res 36, 4 (2019). https://doi.org/10.1007/s11095-018-2531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2531-1

KEY WORDS

Navigation