Photosynthetica 2017, 55(3):510-521 | DOI: 10.1007/s11099-017-0716-1

Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application

M. Grzesik1, Z. Romanowska-Duda2,*, H. M. Kalaji3,4,*
1 Research Institute of Horticulture, Skierniewice, Poland
2 Laboratory of Plant Ecophysiology, University of Lodz, Lodz, Poland
3 SI Technology, Warsaw, Poland
4 Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland

The physiological response of plants to triple foliar biofertilization with cyanobacteria and green algae under the conditions of limited use of chemical fertilizers was investigated. Triple foliar biofertilization with intact cells of Microcystis aeruginosa MKR 0105, Anabaena sp. PCC 7120, and Chlorella sp. significantly enhanced physiological performance and growth of plants fertilized with a synthetic fertilizer YaraMila Complex (1.0, 0.5, and 0.0 g per plant). This biofertilization increased the stability of cytomembranes, chlorophyll content, intensity of net photosynthesis, transpiration, stomatal conductance, and decreased intercellular CO2 concentration. Applied monocultures augmented the quantity of N, P, K in plants, the activity of enzymes, such as dehydrogenases, RNase, acid or alkaline phosphatase and nitrate reductase. They also improved the growth of willow plants. This study revealed that the applied nontoxic cyanobacteria and green algae monocultures have a very useful potential to increase production of willow, and needed doses of chemical fertilizers can be reduced.

Additional key words: energy plant; gas exchange; mineral fertilization

Received: September 28, 2016; Accepted: January 16, 2017; Published: September 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Grzesik, M., Romanowska-Duda, Z., & Kalaji, H.M. (2017). Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica55(3), 510-521. doi: 10.1007/s11099-017-0716-1
Download citation

References

  1. Abd El-Moniem E, Abd-Allah A.S.E.: Effect of green alga cells extract as foliar spray on vegetative growth, yield and berries quality of superior grapevines.-Am.-Eurasian J. Agric. Environ. Sci. 4: 427-433, 2008.
  2. Adam M.S.: The promotive effect of cyanobacterium Nostoc muscorum on the growth of some crop plants.-Acta Microbiol. Pol. 48: 163-171, 1999.
  3. Al-Khiat S.H.A.: Effect of Cyanobacteria as a Soil Conditioner and Biofertilizer on Growth and some Biochemical Characteristics of Tomato (Lycopersicon esculentum L.) Seedlings. Pp. 190. Faculty of Science, King Saud University, Riyadh 2006.
  4. Bergman B., Johansson C., Söderbäck E.: The Nostoc-Gunnera symbiosis.-New Phytol. 122: 379-400, 1992. Go to original source...
  5. Booker F.L.: Influence of ozone on ribonuclease activity in wheat (Triticum aestivum) leaves.-Physiol. Plantarum 120: 249-255, 2004. Go to original source...
  6. Burja A.M., Banaigs B., Abou-Mansour E. et al.: Marine cyanobacteria-a profilic source of natural products.-Tetrahedron 57: 9347-9377, 2001. Go to original source...
  7. Cheng K.J., Ingram J.M., Costerton J.W.: Interactions of alkaline phosphatase and the cell wall of Pseudomonas aeruginosa.-J. Bacteriol. 107: 325-336, 1971. Go to original source...
  8. Chojnacka A., Romanowska-Duda Z.B., Grzesik M. et al.: Cyanobacteria as a source of bioactive compounds for crop cultivation.-In: Wolowski K., Kwandrans J., Wojtal A.Z. (ed): Taxonomy the Queen of Science -the Beauty of Algae. Book of Abstracts of the 29th International Phycological Conference Krakow. Pp. 81-82. Inst. Bot. Polish Acad. Sci., Krakow 2010.
  9. de Caire G.Z., de Cano M.S., Palma R.M. et al.: Changes in soi enzymes activity by cyanobacterial biomass and exopolysaccharides.-Soil Biol. Biochem. 32: 1985-1987, 2000. Go to original source...
  10. de Mulé M.C.Z., de Caire G.Z., de Cano M.S. et al.: Effect of cyanobacterial inoculation and fertilizers on rice seedlings and post harvest soil structure.-Commun. Soil Sci. Plan. 30: 97-107, 1999. Go to original source...
  11. Dick W.A., Tabatabai M.A.: Significance and potential uses of soil enzymes.-In: Metting F.B. (ed): Soil Microbial Ecology: Application in Agricultural and Environmental Management. Pp. 95-125. Marcel Dekker, New York 1993 Ecochem: Foliar Applied Fertilizer. http://www.ecochem.com/t_foliar.html, 2017.
  12. El-Fouly M.M., Abdalla F.E., Shaaban M.M.: Multipurpose large scale production of microalgae biomass in Egypt. Proceedings on 1st Egyptian Etalian Symptoms on Biotechnology. Assiut, Egypt (Nov 21-23). Pp. 305-314, 1992.
  13. El Modafar C., Elgadda M., El Boutachfaiti R. et al.: Induction of natural defence accompanied by salicylic acid-dependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae.-Sci. Hortic.-Amsterdam 138: 55-63, 2012. Go to original source...
  14. Falch B.S., König G.M., Wright A.D. et al.: Biological activities of cyanobacteria: evaluation of extracts and pure compounds.-Planta Med. 61: 321-328, 1995. Go to original source...
  15. Glick B.R., Patten C.L., Holguin G. et al.: Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Pp. 267. ICP, Ontario 1999. Go to original source...
  16. Gorelova O. A.: Communication of cyanobacteria with plant partners during association formation.-Microbiology 75: 465-469, 2006. Go to original source...
  17. Górnik K., Grzesik M.: Effect of Asahi SL on China aster 'Aleksandra' seed yield, germination and some metabolic events.-Acta Physiol. Plant. 24: 379-383, 2002. Go to original source...
  18. Grzesik M., Romanowska-Duda Z.B., Piotrowski K.: The effect of potential climatic changes, Cyanobacteria, Biojodis and Asahi SL on development of the Virginia fanpetals (Sida hermaphrodita) plants.-Pamietnik Pulawski 151: 483-491, 2009.
  19. Grzesik M., Romanowska-Duda Z.: Improvements in germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae.-Pol. J. Environ. Stud. 23: 1147-1153, 2014.
  20. Grzesik M., Romanowska-Duda Z.: Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants.-Pol. J. Environ. Stud. 24: 1003-1012, 2015. Go to original source...
  21. Haroun S.A., Hussein M.H.: The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil.-Asian J. Plant Sci. 2: 944-951, 2003. Go to original source...
  22. Hegazi A.Z., Mostafa M.S.S., Ahmed H.M.I.: Influence of different cyanobacterial application methods on growth and seed production of common bean under various levels of mineral nitrogen fertilization.-Nat. Sci. 8: 183-194, 2010.
  23. Hussain A., Hasnain, S.: Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture.-World J. Microb. Biot. 28: 1459-1466, 2012. Go to original source...
  24. Kalaji M.H, Schansker G., Ladle R. J. et al.: Frequently Asked Questions about chlorophyll fluorescence: practical issues.-Photosynth. Res. 122: 121-158, 2014. Go to original source...
  25. Karthikeyan N., Prasanna R., Nain L. et al.: Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat.-Eur. J. Soil Biol. 43: 23-30, 2007. Go to original source...
  26. Khan A.S., Ahmad B., Jaskani M.J. et al.: Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physico-chemical properties of grapes.-Int. J. Agric. Biol., 14: 383-388, 2012.
  27. Knypl J.S., Kabzinska E.: Growth, phosphatase and ribonuclease activity in phosphate deficient Spirodela oligorrhiza cultures. Biochem. Physiol. Pfl. 171: 279-287, 1977. Go to original source...
  28. Kreitlow S., Mundt S., Lindequist, U.: Cyanobacteria-a potential source of new biologically active substances.-J. Biotechnol. 70: 61-63, 1999. Go to original source...
  29. Kulk M.M.: The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi.-Eur. J. Plant Pathol. 101: 85-599, 1995. Go to original source...
  30. Lehmann K., Hause B., Altmann D. et al.: Tomato ribonuclease LX with the functional endoplasmic reticulum retention motif HDEF is expressed during programmed cell death processes, including xylem differentiation, germination, and senescence.-Plant Physiol. 127: 436-449, 2001. Go to original source...
  31. Mahmoud M.S.: Nutritional status and growth of maize plants as affected by green microalgae as soil additives.-J. Biol. Sci. 1: 475-479, 2001. Go to original source...
  32. Malliga P., Uma L, Subramanian G.: Lignolytic activity of the cyanobacterium Anabena azollae ML2 and the value of coir waste as a carrier for biofertilizer.-Microbios 86: 175-183, 1996.
  33. Markou G., Nerantzis E.: Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions.-Biotechnol. Adv. 31: 1532-1542, 2013. Go to original source...
  34. Masojídek J., Prá¹il O.: The development of microalgal biotechnology in the Czech Republic.-J. Ind. Microbiol. Biot. 37: 1307-1317, 2010. Go to original source...
  35. Mohammadi K., Ghalavand A., Aghaalikhani M.: Study the efficacies of green manure application as chickpea per plant.-World Acad. Sci. Eng. Technol. 46: 233-236, 2010.
  36. Nain L., Rana A., Joshi M. et al.: Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat.-Plant Soil 331: 217-230, 2010. Go to original source...
  37. Nilsson M., Rasmussen U., Bergman B.: Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa).-FEMS Microbiol. Lett. 245: 139-144, 2005. Go to original source...
  38. Nunnery J.K., Mevers E., Gerwick W.H.: Biologically active secondary metabolites from marine cyanobacteria.-Curr. Opin Biotech. 21: 787-793, 2010. Go to original source...
  39. Obreht Z., Kerby N.W., Gantar M. et al.: Effects of rootassociated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings.-Biol. Fert. Soils 15: 68-72, 1993. Go to original source...
  40. Perez-Garcia O., Escalante F.M.E., de Bashan L.E. et al.: Heterotrophic cultures of microalgae: Metabolism and potential products.-Water Res. 45: 11-36, 2011. Go to original source...
  41. Prakash S., Nikhil N.: Algae as a soil conditioner.-Int. J. Eng. Tech. Res. 2: 68-70, 2014.
  42. Prasad R.C., Prasad B.N.: Cyanobacteria as a source biofertilizer for sustainable agriculture in Nepal.-J. Plant Sci. Bot. Orientalis 1: 127-133, 2001.
  43. Pszczolkowski W., Romanowska-Duda Z., Owczarczyk A. et al.: Influence of Secondary Metabolites from Cyanobacteria on the Growth and Plant Development. Physiological Reports: Current Advances in Algal Taxonomy and its Applications: Phylogenetic, Ecological and Applied Perspective. Pp. 195-203. Institute of Botany, Polish Academy of Sciences, Krakow 2012.
  44. Rana A., Joshi M., Prasanna R. et al.: Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria.-Eur. J. Soil Biol. 50: 118-126, 2012. Go to original source...
  45. Rastogi R.P., Sinha R.P.: Biotechnological and industrial significance of cyanobacterial secondary metabolites.-Biotechnol. Adv. 27: 521-539, 2009. Go to original source...
  46. Rodríguez A.A., Stella A.A., Storni M.M. et al.: Effects of cyanobacterial extracelular products and gibberellic acid on salinity tolerance in Oryza sativa L.-Saline Syst. 2: 7, 2006. Go to original source...
  47. Roger P.A., Reynaud P.A.: Free-living Blue-green Algae in Tropical Soils. Pp. 147-168. Martinus Nijh Publ., The Hague 1982. Go to original source...
  48. Romanowska-Duda Z., Wolska A., Malecka, A.: Influence of blue-green algae as nitrogen fertilizer supplier in regulation of water status in grapevines under stress conditions.-In: Medrano H. (ed.): Book of Abstracts: COST 858: Water Transport and Aquaporins in Grapevines, October 20-23, Alcudia, Spain. Pp. 10. University of the Balearic Islands, Palma 2004
  49. Romanowska-Duda Z.B., Grzesik M., Owczarczyk A. et al.: Impact of intra and extracellular substances from Cyanobacteria on the growth and physiological parameters of grapevine (Vitis vinifera).-In: Arola L., Carbonell J. (ed.): 20th International Conference on Plant Growth Substance (IPGSA), Book of Abstracts 28.07-02.08. 2010 Pp. 118. Universitat Rovira i Virgili, Tarragona 2010.
  50. Saadatnia H., Riahi H.: Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants.-Plant Soil Environ. 55: 207-212, 2009. Go to original source...
  51. Sahu D., Priyadarshani I., Rath, B.: Cyanobacteria-as potential biofertilizer.-CIBTech J. Microbiol. 1: 20-26, 2012.
  52. Sergeeva E., Liaimer A., Bergman B.: Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria.-Planta 215: 229-238, 2002. Go to original source...
  53. Shanan N.T., Higazy A.M.: Integrated biofertilization management and cyanobacteria application to improve growth and flower quality of Matthiola incana.-J. Agr. Biol. Sci 5: 1162-1168, 2009.
  54. Shariatmadari Z., Riahi H., Hashtroudi M.S. et al.: Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran.-Soil Sci. Plant Nutr. 59: 535-547, 2013. Go to original source...
  55. ©indelárová M., ©indelár L., Wilhelmová N. et al.: Changes in key enzymes of viral-RNA biosynthesis in chloroplasts from PVY and TMV infected tobacco plants.-Biol. Plantarum 49: 471-474, 2005. Go to original source...
  56. Spinelli F., Fiori G., Noferini M. et al.: Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees.-J. Hortic. Sci. Biotech. 84: 131-137, 2009. Go to original source...
  57. Spiller H., Gunasekaran M.: Ammonia-excreting mutant strain of the cyanobacterium Anabaena variabilis supports growth of wheat.-Appl. Microbiol. Biot. 33: 477-480, 1990. Go to original source...
  58. Srivastava S., Emery R.J.N., Kurepin L.V. et al.: Pea PR 10.1 is a ribonuclease and its transgenic expression elevates cytokinin levels.-Plant Growth Regul. 49: 17-25, 2006. Go to original source...
  59. Song T., Martensson L., Eriksson T.: Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China.-FEMS Microbiol. Ecol. 54: 131-140, 2005. Go to original source...
  60. Subramanaian G., Uma L.: Cyanobacteria in pollution control.-J. Sci. Ind. Res. India 55: 685-692, 1996.
  61. Swarnalakshmi K., Prasanna C.R., Kumar A. et al.: Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat.-Eur. J. Soil Biol. 55: 107-116, 2013. Go to original source...
  62. Thajuddin N., Subramanian G.: Cyanobacterial biodiversity and potential applications in biotechnology.-Curr. Sci. 89: 47-57, 2005.
  63. Tukaj Z.: [Exercise Guide for Plant Physiology.] Pp. 1-186. Wydawnictwo Uniwersytetu Gdanskiego, Gdansk 2007. [In Polish]
  64. Uysal O., Uysal F.O., Ekinci K.: Evaluation of microalgae as microbial fertilizer.-Eur. J. Sustain. Dev. 4: 77-82, 2015. Go to original source...
  65. Vasileva I., Ivanova J., Paunov M et al.:Urea from waste waters-perspective nitrogen and carbon source for green algae Scenedesmus sp. cultivation.-Ecol. Safe. 10: 311-319, 2016.
  66. Wilson L.T.: Cyanobacteria: A potential nitrogen source in rice fields.-Texas Rice 6: 9-10, 2006.