Skip to main content

Advertisement

Log in

Anticancer potential of Himalayan plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Plants used in traditional medicine have stood up to the test of time and contributed many novel compounds for preventive and curative medicine to modern science. India is sitting on a gold mine of well recorded and traditionally well practiced knowledge of herbal medicine. Specially, plants growing at high altitude in Himalayan pastures are time-honored sources of health and general well being of local inhabitants. As of today, Himalayan plants are a major contributor to the herbal pharmaceutical industry both of India and other countries. Plants growing at higher altitudes are subjected to an assault of diverse testing situations including higher doses of mutagenic UV-radiation, physiological drought, desiccation and strong winds. Plants interact with stressful environments by physiological adaptation and altering the biochemical profile of plant tissues and producing a spectrum of secondary metabolites. Secondary metabolites are of special interest to scientists because of their unique pharmacophores and medicinal properties. Secondary metabolites like polyphenols, terpenes and alkaloids have been reported to possess antimutagenic and anticancer properties in many studies. The fundamental aspiration of the current review is to divulge the antimutagenic/anticancer potential of five alpine plants used as food or medicine by the populations living at high altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abartene DY, Malakhovskis A (1975) Combined action of a cytostatic preparation and sea buckthorn oil on biochemical indices. Biologijos Mokalai 1:167–171

    Google Scholar 

  • Agrawal A, Sharma M, Rai B et al (2008) The effect of the aqueous extract of the roots of Asparagus racemosus on hepatocarcinogenesis initiated by diethylnitrosamine. Phyt Res 22:1175–1182

    Article  CAS  Google Scholar 

  • Ahn B, Baik K, Kweon U et al (1995) Acylshikonin analogues: synthesis and inhibition of DNA topoisomerase-I. J Med Chem 38:1044–1047

    Article  PubMed  CAS  Google Scholar 

  • Alecu M, Ursaciuc C, Halalau F et al (1998) Photodynamic treatment of basal cell carcinoma and squamous cell carcinoma with hypericin. Anticancer Res 18:4651–4654

    PubMed  CAS  Google Scholar 

  • Arung ET, Kusuma IW, Christy EO et al (2009) Evaluation of medicinal plants from Central Kalimantan for antimelanogenesis. J Nat Med 63:473–480

    Article  PubMed  CAS  Google Scholar 

  • Aruoma OI (2003) Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat Res 524:9–20

    Google Scholar 

  • Babu T, Kuttan G, Padikkala J (1995) Cytotoxic and anti-tumor properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) urban. J Ethnopharmacol 48:53–57

    Article  PubMed  CAS  Google Scholar 

  • Badhawar R, Fernandez R (1968) Edible wild plants of Himalayas 1964. Survey of India Offices Printing Group, Dehradun

    Google Scholar 

  • Ballantine JA (1969) The isolation of two esters of the naphthaquinone alcohol, shikonin from the shrub Jatropha glandulifera. Phytochem 8:1587–1590

    Article  CAS  Google Scholar 

  • Beutner K, von Krogh G (1990) Current status of podophyllotoxin for treatment of genital warts. Semin Dermatol 9:148–152

    PubMed  CAS  Google Scholar 

  • Beveridge T, Li T, Oomah B et al (1999) Seabuckthorn products: manufacture and composition. J Agri Food Chem 47:3480–3488

    Article  CAS  Google Scholar 

  • Bhatia A, Arora S, Nagpal A et al (2007) Evaluation of in vitro antimutagenic activity of “seabuckthorn “Hippophae rhamnoides Linn. in Ames assay. J Chin Clin Med 2:431–434

    Google Scholar 

  • Bhattacharjee S (1998) Handbook of medicinal plants. Pointer Publications, Jaipur

    Google Scholar 

  • Bilia A, Gallori F, Vincieri F (2002) St. John’s Wort and depression: efficacy, safety and tolerability—an update. Life Sci 70:3077–3096

    Article  PubMed  CAS  Google Scholar 

  • Blasko G, Cordell G (1988) Economic and medicinal plants research. Academic Press, London

    Google Scholar 

  • Bown D (2001) Herbal: the essential guide to herbs for living. Pavilion, London

    Google Scholar 

  • Brigati C, Sander B (1985) CPH-86: a highly purified podophyllotoxin efficiently suppresses in vivo and in vitro immune responses. J Immunopharmacol 7:285–304

    Article  PubMed  CAS  Google Scholar 

  • Bringmann G, Noll TF, Gulder TA et al (2006) Different polyketide folding modes converge to an identical molecular architecture. Nat Chem Biol 2:429–433

    Article  PubMed  CAS  Google Scholar 

  • Butterweck V (2003) Mechanism of action of St John’s Wort in depression: what is known? CNS Drugs 17:539–562

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Sun M, Xing J et al (2004) Antioxidant phenolic constituents in roots of Rheum officinale and Rubia cordifolia: structure-radical scavenging activity relationships. J Agric Food Chem 52:7884–7890

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Xia QH, Meng H et al (2005) Antitumor and synergistic effect of Chinese medicine “bushen huayu jiedu recipe” and chemotherapy on transplanted animal hepatocarcinoma. World J Gastroenterol 11:5218–5220

    PubMed  Google Scholar 

  • Chattopadhaya S, Bisraria VS, Panda AK et al (2004) Cytotoxicity of in vitro produced podophyllotoxin from Podophyllum hexandrum on human cancer cell lines. Nat Prod Res 18:51–57

    Article  CAS  Google Scholar 

  • Chattopadhyay C, Santha T, Prakas R et al (2003) Absolute configuration and anticancer activity of taxiresinol and related lignans of Taxus wallichiana. Bioorg Med Chem 11:4945–4948

    Article  PubMed  CAS  Google Scholar 

  • Chauhan NS (1999) Medicinal and aromatic plants of Himachal Pradesh. Indus Publishing Company, New Delhi

    Google Scholar 

  • Chawla R, Arora R, Singh S et al (2007) Radioprotective and antioxidant activity of fractionated extracts of berries of Hippophae rhamnoides. J Med Food 10:101–109

    Article  PubMed  CAS  Google Scholar 

  • Chittendon F (1951) RHS dictionary of plants plus supplement. Oxford University Press, Oxford

    Google Scholar 

  • Cho MH, Paik YS, Hahn T (1999) Physical stability of shikonin derivatives from the roots of Lithospermum erythrorhizon cultivated in Korea. J Agric Food Chem 47:4117–4120

    Article  PubMed  CAS  Google Scholar 

  • Clark PJ, Slevin ML (1987) The clinical pharmacology of etoposide and teniposide. Clin Pharmacokinet 12:223–252

    Article  PubMed  CAS  Google Scholar 

  • Cybulski WJ, Peterjohn W, Sullivan J (2000) The influence of elevated ultraviolet-B radiation (UV-B) on tissue quality and decomposition of loblolly pine (Pinus taeda L.) needles. Environ Exp Bot 44:231–241

    Article  PubMed  CAS  Google Scholar 

  • De Flora S, Ferguson LR (2005) Overview of mechanisms of cancer chemopreventive agents. Mutat Res 11:8–15

    Google Scholar 

  • Deng R, Tang J, Xie BF et al. (2009) SYUNZ-16, a newly synthesized alkannin derivative, induces tumor cells apoptosis and suppresses tumor growth through inhibition of PKB/AKT kinase activity and blockade of AKT/FOXO signal pathway. Int J Cancer doi:10.1002/ijc.25032

  • Desbene S, Giorgi-Renault S (2002) Drugs that inhibit tubulin polymerization: the particular case of podophyllotoxin and analogues. Curr Med Chem Anticancer Agents 2:71–90

    Article  PubMed  CAS  Google Scholar 

  • Dhar U, Rawal RS, Samant S (1996) Endemic Plant Diversity in Indian Himalaya III. Brassicaceae. Biogeographica 72:19–32

    Google Scholar 

  • D’Hallewin M, Kamuhabwa A, Roskams T et al (2002) Hypericin-based fluorescence diagnosis of bladder carcinoma. BJU Int 89:760–763

    Article  PubMed  Google Scholar 

  • Dhyani D, Maikhuri RK, Rao KS et al (2007) Basic nutritional attributes of Hippophae rhamnoides (Seabuckthorn) populations from Uttarakhand Himalaya, India. Curr Sci 92:1148–1152

    CAS  Google Scholar 

  • Dongre SH, Badami S, Natesan S et al (2007) Antitumor activity of the methanol extract of Hypericum hookerianum stem against Ehrlich Ascites Carcinoma in Swiss Albino Mice. J Pharmacol Sci 103:354–359

    Article  PubMed  CAS  Google Scholar 

  • Durak I, Biri H, Devrim E et al (2004) Aqueous extract of Urtica dioica makes significant inhibition on adenosine deaminase activity in prostate tissue from patients with prostate cancer. Cancer Biol Ther 3:855–857

    Article  PubMed  Google Scholar 

  • Efferth T (2006) Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targets 7:407–421

    Article  PubMed  CAS  Google Scholar 

  • Elangovan V, Govindaswamy S, Ramamoorthy N et al (1995) In vitro studies on the anticancer activity of Bacopa monnieri. Fitoterapia 3:211–215

    Google Scholar 

  • Eyong KO, Folefoc GN, Kuete V et al (2006) Newbouldiaquinone A: a naphthoquinone-anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial agent from Newbouldia laevis. Phytochem 67:605–609

    Article  CAS  Google Scholar 

  • Ferguson LR (1994) Antimutagens as cancer chemopreventive agents in the diet. Mutat Res 307:395–410

    PubMed  CAS  Google Scholar 

  • Foster S (1993) Medicinal plant conservation and genetic resources: examples from the temperate northern hemisphere. Acta Hortic 330:67–73

    Google Scholar 

  • Frandsen H, Ramussen ES, Nielsen PA et al (1990) Metabolic formation, synthesis and genotoxicity of the N-hydroxy derivative of food mutagen 2-amino-1-methyl-6-phenylimidazo [4, 5-b]pyridine (PhIP). Mutagenesis 6:93–98

    Article  Google Scholar 

  • Ghufran M, Qureshi A, Batool A et al (2009) Evaluation of selected indigenous medicinal plants from the western Himalayas for cytotoxicity and as potential cancer chemopreventive agents. Pharm Biol 47:533–538

    Article  Google Scholar 

  • Glisson JK, Rogers HE, Abourashed EA et al (2003) Clinic at the health food store? Employee recommendations and product analysis. Pharmacother 23:64–72

    Article  Google Scholar 

  • Gordaliza M, Castro M, de Corral M et al (2000) Antitumor properties of podophyllotoxin and related compounds. Curr Pharm Des 6:1811–1839

    Article  PubMed  CAS  Google Scholar 

  • Grey C, Widen C, Adlercreutz P et al (2010) Antiproliferative effects of sea buckthorn (Hippophae rhamnoides L.) extracts on human colon and liver cancer cell lines. Food Chem 120:1004–1010

    Article  CAS  Google Scholar 

  • Hadjur C, Richard M, Parat M et al (1996) Photodynamic effects of hypericin on lipid peroxidation and antioxidant status in melanoma cells. Photochem Photobiol 64:375–381

    Article  PubMed  CAS  Google Scholar 

  • Han W, Li L, Qiu S et al (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649

    Article  PubMed  CAS  Google Scholar 

  • Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521

    Article  PubMed  CAS  Google Scholar 

  • Holthuis JJM (1988) Etoposide and teniposide. Bioanalysis, metabolism and clinical pharmacokinetics. Pharm Week Sci Ed 10:101–116

    CAS  Google Scholar 

  • Horwtiz S, Loike J (1977) A comparison of the mechanism of action of VP 16-213 and podophyllotoxin. Lloydia 40:82–89

    Google Scholar 

  • Hostanskaa K, Reichlingb J, Bommerc S et al (2003) Constituent of St John’s wort (Hypericum perforatum L.) extract induces apoptosis by triggering activation of caspases and with hypericin synergistically exerts cytotoxicity towards human malignant cell lines. J Pharm Biopharm 56:121–132

    Article  CAS  Google Scholar 

  • Hou Y, Guo T, Wu C et al (2006) Effect of shikonin on human breast cancer cells proliferation and apoptosis in vitro. Yakugaku Zasshi 126:1383–1386

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Jiang Z, Leung K et al (2006) Simultaneous determination of naphthoquinone derivatives in Boraginaceous herbs by high-performance liquid chromatography. Anal Chim Acta 577:26–31

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Liu ZC (2005) Anticancer effect of shikonin and derivatives. Zhongliu Fangzhi Zazhi 12:75–78

    CAS  Google Scholar 

  • Hwang J, Choi E, Lee J (2006) Antioxidant and antigenotoxic activities of Angelica keiskei. BioFactors 26:231–244

    Article  Google Scholar 

  • Hyatt R, Feldman R (1978) Chinese herbal medicine: ancient art and modern science. Schocken Books, New York

    Google Scholar 

  • Imbert TF (1998) Discovery of podophyllotoxins. Biochimie 80:207–222

    Article  PubMed  CAS  Google Scholar 

  • Indrayan AK, Yadav V, Tyagi P et al (2004) Antibacterial activity of the dye from rhizome of Arnebia nobilis (Ratanjot). Indian J Microbiol 44:1

    Google Scholar 

  • Ishida T, Sakaguchi I (2007) Protection of human keratinocytes from UVB-induced inflammation using root extract of Lithospermum erythrorhizon. Biol Pharm Bull 30:928–934

    Article  PubMed  CAS  Google Scholar 

  • Izhaki I (2002) The role of fruit traits in determining fruit removal in East Mediterranean ecosystems. In: Levey DJ, Silva WR, Galetti M (eds) Dispersal and frugivory: ecology, evolution and conservation. CAB International Publishing, Wallingford

    Google Scholar 

  • Jaeger E (1972) A source-book of biological names and terms. Springfield, IL

    Google Scholar 

  • Jaitak V, Sharma K, Kalia K et al (2010) Antioxidant activity of Potentilla fulgens: an alpine plant of western Himalaya. J Food Comp Anal 2:142–147

    Article  CAS  Google Scholar 

  • Juarranz M, Calle-Purón ME, González-Navarro A et al (2002) Physical exercise, use of Plantago ovata and aspirin, and reduced risk of colon cancer. Eur J Cancer Prev 11:465–472

    Article  PubMed  CAS  Google Scholar 

  • Kaith BS, Kaith NS, Chauhan NS (1996) Anti-inflammatory effect of Arnebia euchroma root extracts in rats. J Ethnopharmacol 55:77–80

    Article  PubMed  CAS  Google Scholar 

  • Kamuhabwa AR, Isabelle CG, Jacques D et al (2002) Biodistribution of hypericin in orthotopic transitional cell carcinoma bladder tumors: implication for whole bladder wall photodynamic therapy. Int J Cancer 97:253–260

    Article  PubMed  CAS  Google Scholar 

  • Kang T, Liang N (1997) Studies on the inhibitory effects of quercetin on the growth of HL-60 leukemia cells. Biochem Pharmacol 54:1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Kashiwada Y, Bastow K, Lee K (1995) Novel lignan derivatives as selective inhibitors of DNA Topoisomerase II. Bioorg Med Chem Lett 8:905–908

    Article  Google Scholar 

  • Kasper S (2001) Hypericum perforatum—a review of clinical studies. Pharmacopsych 34:51–55

    Article  Google Scholar 

  • Kataria H (1994) Cancer care by natural medicinal plants and carcinogenesis. Asian J Chem Rev 5:47–50

    CAS  Google Scholar 

  • Kato R, Yamazoe Y (1987) Metabolic activation and covalent binding to nucleic acids to nucleic acids of carcinogenic heterocyclic amines from cooked foods and amino acid pyrolysates. Jpn J Cancer Res 78:297–311

    PubMed  CAS  Google Scholar 

  • Kerb R, Brockmoller B, Staffeld M et al (1996) Single-dose and steady-state pharmacokinetics of hypericin and pseudohypericin. Antimicrob Agents Chemother 40:2087–2093

    PubMed  CAS  Google Scholar 

  • Khan MT, Ather A, Thompson KD et al (2005a) Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res 67:107–119

    Article  PubMed  CAS  Google Scholar 

  • Khan T, Ahmad M, Nisar M et al (2005b) Enzyme inhibition and radical scavenging activities of aerial parts of Paeonia emodi Wall (Paeoniaceae). J Enzyme Inhib Med Chem 20:245–249

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Kan SH, Jung JH (1991) Studies on the processing of Korean traditional so-ju Jindo Hongju. Kor J Diet Culture 6:245–249

    Google Scholar 

  • Kim S, Kang I, Yoon T (2001) Antitumor activities of a newly synthesized shikonin derivative, 2-hyim-DMNQS-33. Cancer Lett 172:171–175

    Article  PubMed  CAS  Google Scholar 

  • Klier CM, Schmid-Siegel B, Schafer MR et al (2006) St. John’s wort (Hypericum perforatum) and breastfeeding: plasma and breast milk concentrations of hyperforin for 5 mothers and 2 infants. J Clin Psychiatry 67:305–309

    Article  PubMed  CAS  Google Scholar 

  • Kounsar F, Afzal Z (2010) Rheum emodi induces nitric oxide synthase activity in murine macrophages. Am J Biomed Sci (in press)

  • Kuo PL, Hsu YL, Ng LT et al (2004) Rhein inhibits the growth and induces the apoptosis of Hep G2 cells. Planta Med 70:12

    Article  PubMed  CAS  Google Scholar 

  • Kwon YI, Vattem DA, Shetty K (2006) Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Clin Nutr 15:107–118

    PubMed  Google Scholar 

  • Langosch J, Zhou X, Heinen M et al (2002) St John’s wort (Hypericum perforatum) modulates evoked potentials in guinea pig hippocampal slices via AMPA and GABA receptors. Eur Neuropsych 12:209–216

    Article  CAS  Google Scholar 

  • Lanju J (1989) Free amino acids and vitamin C in the fruits of Hippophae rhamnoides, Nitraria tangutorum and Berberis dasystachya. Acta Bot Sin 31:487–488

    Google Scholar 

  • Lee H, Lin JY (1988) Antimutagenic activity of extracts from anticancer drugs in Chinese medicine. Mutat Res 204(2):229–234

    Article  PubMed  CAS  Google Scholar 

  • Li TSC (1999) Sea buckthorn: new crop opportunity. In: Janick J (ed) ASHS press, Alexandria

  • Liu C, Kwan D, Saxton R (2000) Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Sur Res 93:137–143

    Article  CAS  Google Scholar 

  • Liu W, Chuang W, Tsai M et al (2008) Cordyceps sinenesis health supplement enhances recovery from taxol-induced leucopenia. Exp Biol Med 233:447–455

    Article  CAS  Google Scholar 

  • Loike J, Horwitz S (1976a) Effects of podophyllotoxin and VP16-213 on microtubule assembly in vitro and nucleoside transport in HeLa cells. Biochem 15:5435–5442

    Article  CAS  Google Scholar 

  • Loike J, Horwitz S (1976b) Effect of VP 16-213 on the intracellular degradation of DNA in HeLa cells. Biochem 15:5443–5448

    Article  CAS  Google Scholar 

  • Loike J, Brewer C, Sternlicht H et al (1978) Structure-activity study of the inhibition of microtubules assembly in vitro by podophyllotoxin and its congeners. Cancer Res 38:2688

    PubMed  CAS  Google Scholar 

  • Lu R (1992) Sea buckthorn: a multipurpose plant species for fragile mountains. Int. centre for integrated mountain development, Katmandu

    Google Scholar 

  • Lu M, Chen QH (1989) Biochemical study of Chinese rhubarb. XXIX. Inhibitory effects of anthraquinone on P388 leukemia in mice. J Chin Pharmacol Univ 20:155–157

    CAS  Google Scholar 

  • Malik S, Sharma N, Sharma U et al. (2009) Qualitative and quantitative analysis of anthraquinone derivatives in rhizomes of tissue culture-raised Rheum emodi Wall. Plants. J Plant Physiol. doi:10.1016/j.jplph.2009.12.007

  • Manjkhola S, Dhar U, Joshi M et al (2005) Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma - a critically endangered medicinal plant of the Himalaya. In Vitro Cell Dev Biol Plant 41:244–248

    Article  Google Scholar 

  • Mao F, Xiao B, Jiang Z et al. (2010) Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Med Oncol. doi:10.1007/s12032-009-9415-5

  • Meng T, Feng C, Dawei R et al (2010) Optimization for the production of exopolysaccharides from Morchella esculenta SO-02 in submerged culture and its antioxidant activities in vitro Carbohydrate. Polymers 79:700–704

    CAS  Google Scholar 

  • Miccoli L, Beurdeley-Thomas A, Pinieux GD et al (1998) Light-induced photoactivation of hypericin affects the energy metabolism of human glioma cells by inhibiting hexokinase bound to mitochondria. Cancer Res 58:5777–5786

    PubMed  CAS  Google Scholar 

  • Mills S, Bone K (2000) Principles and practice of phytotherapy; modern herbal medicine. Churchill Livingstone, London

    Google Scholar 

  • Minyi C (1992) Anticancer medicinal herbs. Hunan Science and Technology Publishing House, Hunan, China, p 308

    Google Scholar 

  • Moraes RM, Lata H, Bedir E et al (2002) On american mayapple as practical source of podophyllotoxin. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 527–532

    Google Scholar 

  • Nathan P (1999) The experimental and clinical pharmacology of St. John’s wort (Hypericum perforatum L.). Mol Psych 4:333–338

    Article  CAS  Google Scholar 

  • Nautiyal B, Prakash V, Maithani R et al (2002) Germinability, productivity and economic viability of Rheum emodi Wall ex Meissn cultivated at lower altitude. Curr Sci 84:143–148

    Google Scholar 

  • Nersesian AK, Zilfian VN, Kumkumadzhian VA et al (1990) Antimutagenic properties of sea buckthorn oil. Genetika 26:378–380

    PubMed  CAS  Google Scholar 

  • Nersesyan A, Muradyan R (2004) Sea-buckthorn juice protects mice against genotoxic action of cisplatin. Exp Oncol 26:153–155

    PubMed  Google Scholar 

  • Oshio H, Kawamura N (1985) Determination of the laxative compounds in rhubarb by high performance liquid chromatography. Shoyakugaku Zasshi 39:131–138

    CAS  Google Scholar 

  • Padmavathi B, Upreti M, Singh V et al (2005) Chemoprevention by Hippophae rhamnoides: effects on tumorigenesis, phase II and antioxidant enzymes, and IRF-1 transcription factor. Nutr Cancer 51:59–67

    Article  PubMed  Google Scholar 

  • Papageorgiu V, Assimopoulou AN, Couladouros E et al (1999) The chemistry and biology of alkannin, shikonin and related naphthazarin natural products. Angew Chem Int Ed 38:270–300

    Article  Google Scholar 

  • Patocka J (2003) The chemistry, pharmacology, and toxicology of the biologically active constituents of the herb Hypericum perforatum L. J App Biomed 1:61–70

    CAS  Google Scholar 

  • Peigen X, Liyi H, Liwei W (1984) Ethnopharmacologic study of Chinese rhubarb. J Ethnopharm 10:275–293

    Article  CAS  Google Scholar 

  • Poldinger W (2000) History of St. Johns wort. Schweiz Rundsch Med Prax 89:2102–2109

    CAS  Google Scholar 

  • Polunin O, Stainton A (1984) Flowers of the Himalaya. Oxford University Press, Delhi

    Google Scholar 

  • Pratt A (1898) The flowering plants, grasses, sedges, and ferns of Great Britain. Frederick Warne and Co, London

    Google Scholar 

  • Prem Kumar I, Samanta N, Rana S et al (2003) Enhancement of radiation induced apoptosis by Podophyllum hexandrum. J Pharm Pharmacol 55:1267–1273

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar V, Guha G, Ashok R (2010) Antioxidant and anti-cancer potentials of Rheum emodi rhizome extracts. Evidence-based Compl Alt Med. doi:10.1093/ecam/neq048

  • Rao KS, Semwal R, Maikhuri RK et al (2003) Indigenous ecological knowledge, biodiversity and sustainable development in the central Himalayas. Trop Ecol 44:93–111

    Google Scholar 

  • Reddy K, Bid H, Nayak V et al (2009) In vitro and in vivo anticancer activity of 2-deacetoxytaxinine J and synthesis of novel taxoids and their in vitro anticancer activity. Eur J Med Chem 44:3947–3953

    Article  PubMed  CAS  Google Scholar 

  • Reid A, de Klerk NH, Ambrosini GL et al (2006) The risk of lung cancer with increasing time since ceasing exposure to asbestos and quitting smoking. Occup Environ Med 63:509–512

    Article  PubMed  CAS  Google Scholar 

  • Richter C, Hoddinott J (1997) UV-B effects on growth, pigments and electrolyte leakage in conifer seedlings. Plant Physiol 114:98

    Google Scholar 

  • Robinson A, Kumar TV, Sreedhar E et al (2008) A new sesquiterpene lactone from the roots of Saussurea lappa: structure- anticancer activity study. Bioorg Med Chem Lett 18:4015–4017

    Article  PubMed  CAS  Google Scholar 

  • Rousi A (1971) The genus Hippophae L. A taxonomic study. Ann Bot Fennici 8:177–227

    Google Scholar 

  • Ruckert U, Likussar W, Michelitsch A (2007) Simultaneous determination of total hypericin and hyperforin in St. John’s wort extracts by HPLC with electrochemical detection. Phytochem Anal 18:204–208

    Article  PubMed  CAS  Google Scholar 

  • Saha P, Mandal S, Das A et al (2004) Evaluation of the anticarcinogenic activity of Swertia chirata Buch.Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytother Res 18:373–378

    Article  PubMed  Google Scholar 

  • Savini I, Arnone R, Catani MV (2009) Origanum vulgare induces apoptosis in human colon cancer Caco-2 cells. Nutr Cancer 61:381–389

    Article  PubMed  CAS  Google Scholar 

  • Saw C, Olivo M, Soo K et al (2006) Delivery of hypericin for photodynamic applications. Cancer Lett 241:23–30

    Article  PubMed  CAS  Google Scholar 

  • Schempp C, Pelz K, Wittmer A et al (1999) Antibacterial activity of hyperforin from St. John’s wort, against multiresistant Staphylococcus aureus and gram-positive bacteria. Lancet 353:2129

    Article  PubMed  CAS  Google Scholar 

  • Schempp CM, Winghofer B, Ludtke R et al (2000) Topical application of St. John’s wort (Hypericum perforatum L.) and of its metabolite hyperforin inhibits the allostimulatory capacity of epidermal cells. Br J Dermatol 142:979–984

    Article  PubMed  CAS  Google Scholar 

  • Schwarz UI, Hanso H, Oertel R et al (2007) Induction of intestinal P-glycoprotein by St John’s wort reduces the oral bioavailability of talinolol. Clin Pharmacol Ther 81:669–678

    Article  PubMed  CAS  Google Scholar 

  • Sharma R (2003) Medicinal plants of India: an encyclopedia. Daya Publishing House, Delhi

    Google Scholar 

  • Sharma P, Shanmugavel M, Saxena A et al (2008) Induction of apoptosis by a synergistic lignan composition from Cedrus deodara in human cancer cells. Phytother Res 22:1587–1594

    Article  PubMed  CAS  Google Scholar 

  • Silva B, Ferreres F, Malva J (2005) Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem 90:157–167

    Article  CAS  Google Scholar 

  • Singh B, Sharma MK, Meghwal PR et al (2003) Anti-inflammatory activity of shikonin derivatives from Arnebia hispidissima. Phytomed 10:375–380

    Article  CAS  Google Scholar 

  • Singh P, Kumar R, Sharma A et al (2009) Podophyllum hexandrum fraction (REC-2006) shows higher radioprotective efficacy in the p53-Carrying hepatoma cell line: a role of cell cycle regulatory proteins. Int Cancer Ther 8:261–272

    Article  CAS  Google Scholar 

  • Skalkos D, Stavropoulos NE, Tsimaris I et al (2005) The lipophilic extract of Hypericum perforatum exerts significant cytotoxic activity against T24 and NBT-II urinary bladder tumor cells. Planta Med 71:1030–1035

    Article  PubMed  CAS  Google Scholar 

  • Small E, Catling TM, Li T (2002) Blossoming treasures of biodiversity: 5. Sea Buckthorn (Hippophae rhamnoides) an ancient crop with modern virtues. Biodiversity 3:25–27

    Google Scholar 

  • Song Y, Zhang H, Chang C et al (1994) Cytotoxic cyclolignans from Koelrenteria henrigi. J Nat Prod 57:1670–1674

    Article  PubMed  CAS  Google Scholar 

  • Srivastava GN, Hasan SA, Bagchi GD et al (2000) Indian traditional veterinary medicinal plants. CIMAP, Lucknow

    Google Scholar 

  • Steinmetz KA, Potter JD (1991) Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control 2:427–442

    Article  PubMed  CAS  Google Scholar 

  • Su HY, Cheng SH, Chen CC et al (1995) Emodin inhibits the mutagenicity and DNA adducts induced by 1-nitropyrene. Mutat Res 329:205–212

    PubMed  CAS  Google Scholar 

  • Sun M, Sakakibara H, Ashida H et al (2000) Cytochrome P4501A 1-Inhibitory action of antimutagenic anthraquinones in medicinal plants and structure-activity relationship. Biosci Biotechnol Biochem 64:1373–1378

    Article  PubMed  CAS  Google Scholar 

  • Sundriyal M, Sundriyal R (2003) Underutilized edible plants of the Sikkim Himalaya: need for domestication. Curr Sci 85:6

    Google Scholar 

  • Tai J, Cheung S (2005) In vitro culture studies of FlorEssence on human tumor cell lines. Phytother Res 19:107–112

    Article  PubMed  Google Scholar 

  • Tiitinen KM, Yang B, Haraldsson GG et al (2006) Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophae rhamnoides L.) varieties. J Agric Food Chem 5:2508–2513

    Article  CAS  Google Scholar 

  • Topliss J, Clark G, Ernst M et al (2002) Natural and synthetic substances related to human health. Pure Appl Chem 74:1957–1985

    Article  CAS  Google Scholar 

  • Uddin S, Choudhry M (1995) Quercetin, a bioflavonoid, inhibits the DNA synthesis of human leukemia cells. Biochem Mol Biol Int 36:545–550

    PubMed  CAS  Google Scholar 

  • Uniyal S, Awasthi A, Rawat G (2002) Current status and distribution of commercially exploited medicinal and aromatic plants in upper Gori valley, Kumaon Himalaya, Uttaranchal. Curr Sci 82:10

    Google Scholar 

  • Ved DK, Tandon V (1998) Conservation assessment & management plan workshop. Kullu

  • Vijayaraghavan R, Gautam A, Kumar O et al (2006) Protective effect of ethanolic and water extracts of sea buckthorn (Hippophae rhamnoides L.) against the toxic effects of mustard gas. Indian J Exp Biol 44:821–831

    PubMed  CAS  Google Scholar 

  • Wang JK, Li A, Wang H et al (2006) Comparative studies on purgative potency among three spieces of certified rhubarb. Zhongguo Zhong Yao Za Zhi 31:1987–1991

    PubMed  Google Scholar 

  • Wills RB, Bone K, Morgan M (2000) Herbal products: active constituents, modes of action and quality control. Nutr Res Rev 13:47–77

    Article  PubMed  CAS  Google Scholar 

  • Xiong W, Luo G, Zhou L et al (2009) In vitro and in vivo antitumor effects of acetylshikonin isolated from Arnebia euchroma (Royle) Johnst (Ruanzicao) cell suspension cultures. Chin Med 4:14

    Article  PubMed  CAS  Google Scholar 

  • Xu M (1994) The medical research and exploitation of sea buckthorn. Hippophae 7:32–34

    Google Scholar 

  • Xuan Y, Hu X (2009) Naturally-occurring shikonin analogues-a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274:233–242

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Kallio H (2006) Analysis of triacylglycerols of seeds and berries of sea buckthorn (Hippophae rhamnoides) of different origins by mass spectrometry and tandem mass spectrometry. Lipids 41:381–392

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Chen Y, Duan W et al (2006) SH-7, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor. Int J Cancer 119:1184–1193

    Article  PubMed  CAS  Google Scholar 

  • Zeb A (2004) Important therapeutic uses of Sea Buckthorn (Hippophae): a review. J Biol Sci 4:687–693

    Article  Google Scholar 

  • Zhang P (1989) The anti-cancer activities of Hippophae seed oil and its effect on the weight of the immunological organs. Hippophae 3:31

    Google Scholar 

  • Zhang ZQ, Cao XC, Zhang L et al (2005) Effect of shikonin, a phytocompound from Lithospermum erythrorhizon, on rat vascular smooth muscle cells proliferation and apoptosis in vitro. Zhonghua Yi Xue Za Zhi 85:1484–1488

    PubMed  CAS  Google Scholar 

  • Zhou X, Chen Q (1988) Biochemical study of rhubarb XXII. Inhibitory effect of antrhquinone derivatives on sodium potassium atpase of rabbit renal medulla and their diuretic action. Acta Pharmaceutica Sinica 23:17–20

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Song B, Jin L et al (2006) Isolation and inhibitory activity against ERK phosphorylation of hydroxyanthraquinones from rhubarb. Bioorg Med Chem Lett 16:563–568

    Article  PubMed  CAS  Google Scholar 

  • Zou Y, Lu Y, Wei D (2009) Protective effects of a flavonoid-rich extract of Hypericum perforatum L. against hydrogen peroxide-induced apoptosis in PC12 cells. Phytother Res 24:6–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Nagpal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, A., Arora, S., Singh, B. et al. Anticancer potential of Himalayan plants. Phytochem Rev 10, 309–323 (2011). https://doi.org/10.1007/s11101-010-9202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9202-0

Keywords

Navigation