Skip to main content

Advertisement

Log in

Alkamides: a critical reconsideration of a multifunctional class of unsaturated fatty acid amides

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Alkamides are natural products formed by connecting straight-chain, mostly unsaturated, aliphatic acids with various amines by an amide linkage. More than 300 derivatives are known from eight plant families consisting of various combinations of 200 acids with 23 amines. Apart from a few saturated derivatives alkamides with unsaturated acid parts are grouped into compounds with purely olefinic patterns and those with olefinic and acetylenic linkages. Derived from C18 oleic acid the acid parts are modified either by chain elongations to C28 or by oxidative shortenings to C4 acid residues. Substrate and regiospecific desaturases and acetylenases are responsible for their characteristic patterns of unsaturation. Amine parts are derived from various amino acids by decarboxylation. Beside the widespread isobutylamines alkamides with six- and five-membered ring amines and those with phenylalanine derived amines are characteristic for the Asteraceae and Piperaceae while benzylamines are restricted to the Brassicaceae. Within the Asteraceae 2-methylbutylamine distinguishes the tribe Heliantheae from Anthemideae characterized by ring amines. Alkamides with elongated olefinic acid parts are mainly found in Piperaceae and Brassicaceae while acetylenic acid parts are typical for Asteraceae. A wide variety of biological activities ranges from the characteristic pungent/tingling property and high insecticidal toxicity to significant antifungal, antibacterial, antiprotozoal, molluscicidal, cercaricidal, and acaricidal activity. They also act as plant growth-promoting substances. Position and stereochemistry of the double bonds are essential for the different qualities of the pungent taste. Medically alkamides possess anti-inflammatory and analgesic properties and are responsible for immuno-modulatory and cannabinomimetic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In addition, a saturated C28 tyramide (f) has been isolated from Zanthoxylum gilletii (Wansi et al. 2009).

References

  • Abarbri M, Parrain JL, Duchêne A (1998) A synthetic approach to natural dienamides of insecticidal interest. Synth Commun 28:239–249

    Article  CAS  Google Scholar 

  • Achenbach H, Fietz W, Wörth J, Waibel R, Portecop J (1986) Constituents of tropical medicinal plants, IXX. GC/MS-investigations of the constituents of Piper amalago—30 new amides of the piperine-type. Planta Med 52:12–18

    Article  Google Scholar 

  • Acree F Jr, Jacobson M, Haller HL (1945) An amide possessing insecticidal properties from the roots of Erigeron affinis DC. J Org Chem 10:236–242

    Article  CAS  Google Scholar 

  • Adesina SK, Reisch J (1988) Arnottianamide and other constituents of Zanthoxylum gillettii root. J Nat Prod 51:601–602

    Article  CAS  PubMed  Google Scholar 

  • Ahn JW, Ahn MJ, Zee OP, Kim EJ, Lee SG, Kim HJ, Kubo I (1992) Piperidine alkaloids from Piper retrofractum fruits. Phytochemistry 31:3609–3612

    Article  CAS  Google Scholar 

  • Aihara T (1950) On the principles of Xanthoxylum piperitum DC. II. The isolation of sanshoöls and the structure of sanshoöl I. J Pharm Soc Jpn 70:405–409

    CAS  Google Scholar 

  • Ainslie RD, Barchi JJ Jr, Kuniyoshi M, Moore RE, Mynderse JS (1985) Structure of malyngamide C. J Org Chem 50:2859–2862

    Article  CAS  Google Scholar 

  • Althaus JB, Kaiser M, Brun R, Schmidt TJ (2014) Antiprotozoal activity of Achillea ptarmica (Asteraceae) and its main alkamide constituents. Molecules 19:6428–6438

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Neto M, Mendes PH, Silveira ER (1996) An imidazole alkaloid and other constituents from Pilocarpus trachyllophus. Phytochemistry 42:885–887

    Article  CAS  Google Scholar 

  • Annalakshmi R, Uma R, Subashchandran G, Muneeswaran A (2012) A treasure of medicinal herb—Anacyclus pyrethrum, a review. Indian J Drugs Dis 1:59–67

    Google Scholar 

  • Ardjomand-Woelkart K, Bauer R (2014) Echinacea: a survey of current literature [Echinacea: Eine Bestandsaufnahme der neueren Literatur]. Z Phytother 35:128–134

    Article  Google Scholar 

  • Artaria C, Maramaldi G, Bonfigli A, Rigano L, Appendino G (2011) Lifting properties of the alkamide fraction from the fruit husks of Zanthoxylum bungeanum. Int J Cosmet Sci 33:328–333

    Article  CAS  PubMed  Google Scholar 

  • Asano M, Kanematsu T (1927) Ueber die Bestandteile von Spilanthes acmella L. f. fusca Makino. J Pharm Soc Jpn 544:521–525

    Google Scholar 

  • Asano M, Kanematsu T (1931) Über Sanshool, einen Bestandteil von Xanthoxylum piperitum D. C. J Pharm Soc Jpn 51:384–390

    CAS  Google Scholar 

  • Asano M, Kanematsu T (1932) Über die Konstitution des Spilanthols, des scharfen Prinzips der Parakresse. Ber Dtsch Chem Ges 65:1602–1604

    Article  Google Scholar 

  • Aza-González C, Núñez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capscicum spp.). Plant Cell Rep 30:695–706

    Article  PubMed  CAS  Google Scholar 

  • Bader M, Stark TD, Dawid C, Lösch S, Hofmann T (2014) All-trans-configuration in Zanthoxylum alkylamides swaps the tingling with a numbing sensation and diminishes salivation. J Agric Food Chem 62:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Bae SS, Ehrmann BM, Ettefagh KA, Cech NB (2010) A validated liquid chromatography-electrospray-ionization-mass spectrometry method for quantification of spilanthol in Spilanthes acmella (L.) Murr. Phytochem Anal 21:438–443

    Article  CAS  PubMed  Google Scholar 

  • Banerji A, Pal SC (1982) A new alkamide from Piper sylvaticum. Phytochemistry 21:1321–1323

  • Banerji A, Pal SC (1983) Total synthesis of sylvamide, a Piper alkamide. Phytochemistry 22:1028–1030

    Article  CAS  Google Scholar 

  • Bauer R, Remiger P, Wagner H (1988) Alkamides from the roots of Echinacea purpurea. Phytochemistry 27:2339–2342

    Article  CAS  Google Scholar 

  • Bauer R, Remiger P, Wagner H (1989) Alkamides from the roots of Echinacea angustifolia. Phytochemistry 28:505–508

    Article  CAS  Google Scholar 

  • Bautista DM, Sigal YM, Milstein AD, Garrison JL, Zorn JA, Tsuruda PR, Nicoll RA, Julius D (2008) Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 11:772–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binns SE, Livesey JF, Arnason JT, Baum BR (2002) Phytochemical variation in Echinacea from roots and flowerheads of wild and cultivated populations. J Agric Food Chem 50:3673–3687

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann F, Dallwitz E (1974) Notiz über die Biogenese von Polyinamiden. Chem Ber 107:2120–2122

    Article  CAS  Google Scholar 

  • Bohlmann F, Grenz M (1966) Über die Inhaltsstoffe aus Echinacea-Arten. Chem Ber 99:3197–3200

    Article  CAS  Google Scholar 

  • Bohlmann F, Hoffmann H (1983) Further amides from Echinacea purpurea. Phytochemistry 22:1173–1175

    Article  CAS  Google Scholar 

  • Bohlmann F, Zdero C (1967) Über zwei neue Isobutylamide aus Chrysanthemum frutescens L. Chem Ber 100:104–106

    Article  CAS  Google Scholar 

  • Bohlmann F, Zdero C (1970) Die Inhaltsstoffe aus Anthemis fuscata Brot. Chem Ber 103:2856–2859

  • Bohlmann F, Zdero C (1973) Neue Inhaltsstoffe aus Achillea-Arten. Chem Ber 106:1328–1336

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann F, Zdero C (1979) Neue C10-Säureamide, Furaneremophilane und andere Inhaltsstoffe aus bolivianischen Senecio-Arten. Phytochemistry 18:125–128

    Article  CAS  Google Scholar 

  • Bohlmann F, Burkhardt T, Zdero C (1973) Naturally occurring acetylenes. Academic Press, London

    Google Scholar 

  • Bohlmann F, Zdero C, Suwita A (1974) Weitere Amide aus der Tribus Anthemideae. Chem Ber 107:1038–1043

    Article  CAS  Google Scholar 

  • Bohlmann F, Fritz U, Dutta L (1980a) Neue Acetylenverbindungen aus Leucanthemum-Arten und Revision der Struktur eines Germacranolids. Phytochemistry 19:841–844

    Article  CAS  Google Scholar 

  • Bohlmann F, Ziesche J, Robinson H, King RM (1980b) Neue Amide aus Spilanthes alba. Phytochemistry 19:1535–1537

    Article  CAS  Google Scholar 

  • Bohlmann F, Gerke T, Ahmed M, King RM, Robinson H (1983) Neue N-Isobutylamide aus Heliopsis-Arten. Liebigs Ann Chem 1202–1206

  • Bohlmann F, Hartono L, Jakupovic J (1985) Highly unsaturated amides from Salmea scandens. Phytochemistry 24:595–596

    Article  CAS  Google Scholar 

  • Boonen J, Baert B, Burvenich C, Blondeel P, De Saeger S, De Spiegeleer B (2010a) LC-MS profiling of N-alkylamides in Spilanthes acmella extract and the transmucosal behaviour of its main bio-active spilanthol. J Pharm Biomed Anal 53:243–249

    Article  CAS  PubMed  Google Scholar 

  • Boonen J, Baert B, Roche N, Burvenich C, De Spiegeleer B (2010b) Transdermal behaviour of the N-alkylamide spilanthol (affinin) from Spilanthes acmella (Compositae) extracts. J Ethnopharmacol 127:77–84

    Article  CAS  PubMed  Google Scholar 

  • Boonen J, Bronselaer A, Nielandt J, Veryser L, De Tré G, De Spiegeleer B (2012a) Alkamid database: chemistry, occurrence and functionality of plant N-alkylamides. J Ethnopharmacol 142:563–590

    Article  CAS  PubMed  Google Scholar 

  • Boonen J, Sharma V, Dixit VK, Burvenich C, De Spiegeleer B (2012b) LC-MS N-alkylamide profiling of an ethanolic Anacyclus pyrethrum root extract. Planta Med 78:1787–1795

    Article  PubMed  Google Scholar 

  • Bowden K, Ross WJ (1963) The local anaesthetic in Fagara xanthoxyloides. J Chem Soc 3503–3505

  • Bryant BP, Mezine I (1999) Alkylamides that produce tingling paresthesia activate tactile and thermal trigeminal neurons. Brain Res 842:452–460

    Article  CAS  PubMed  Google Scholar 

  • Buchheim R (1876) Ueber die pharmakologische Gruppe des Piperins. Arch Exp Pathol Pharm 5:455–462

    Article  Google Scholar 

  • Burden RS, Crombie L (1969) Amides of vegetable origin Part XII. A new series of alka-2,4-dienoic tyramin-amides from Anacyclus pyrethrum D.C. (Compositae). J Chem Soc C Org 19:2477–2481

    Article  Google Scholar 

  • Cahoon EB, Lindqvist Y, Schneider G, Shanklin J (1997) Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci USA 94:4872–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci USA 96:12935–12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Ripp KG, Hall SE, Kinney AJ (2001) Formation of conjugated Δ8, Δ10-double bonds by Δ12-oleic-acid desaturase-related enzymes. J Biol Chem 276:2637–2643

    Article  CAS  PubMed  Google Scholar 

  • Cambie RC, Gardner JN, Jones ERH, Lowe G, Read G (1963) Chemistry of the higher fungi. Part XIV. Polyacetylenic metabolites of Poria sinuosa Fr. J Chem Soc 2056–2064

  • Cariño-Cortés R, Gayosso-De-Lucio JA, Ortiz MI, Sánchez-Gutiérrez M, García-Reyna PB, Cilia-López VG, Pérez-Hernández N, Moreno E, Ponce-Monter H (2010) Antinociceptive, genotoxic and histopathological study of Heliopsis longipes S. F. Blake in mice. J Ethnopharmacol 130:216–221

    Article  PubMed  CAS  Google Scholar 

  • Casado M, Ortega MG, Peralta M, Agnese AM, Caprera JL (2009) Two new alkamides from roots of Acmella decumbens. Nat Prod Res 23:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Castro KNC, Lima DF, Vasconcelos LC, Leite JRSA, Santos RC, Paz Neto AA, Costa-Júnior LM (2014) Acaricide activity in vitro of Acmella oleracea against Rhipicephalus microplus. Parasitol Res 113:3697–3701

    Article  CAS  PubMed  Google Scholar 

  • Chaaib F, Queiroz EF, Ndjoko K, Diallo D, Hostettmann K (2003) Antifungal and antioxidant compounds from the root bark of Fagara zanthoxyloides. Planta Med 69:316–320

    Article  CAS  PubMed  Google Scholar 

  • Chan GW, Berry D, DeBrosse CW, Hemling ME, MacKenzie-LoCasto L, Offen PH, Westley JW (1993) Conioidines A and B, novel DNA-interacting pyrrolidines from Chamaesaracha conioides. J Nat Prod 56:708–713

    Article  CAS  PubMed  Google Scholar 

  • Chen IS, Chen TL, Lin WY, Tsai IL, Chen YC (1999) Isobutylamides from the fruit of Zanthoxylum integrifoliolum. Phytochemistry 52:357–360

    Article  CAS  Google Scholar 

  • Chen Y, Fu T, Tao T, Yang J, Chang Y, Wang M, Kim L, Qu L, Cassady J, Scalzo R, Wang X (2005) Macrophage activating effects of new alkamides from the roots of Echinacea species. J Nat Prod 68:773–776

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Chung CY, Hwang TL, Chen JF (2009) Amides and benzenoids from Zanthoxylum ailanthoides with inhibitory activity on superoxide generation and elastase release by neutrophils. J Nat Prod 72:107–111

    Article  CAS  PubMed  Google Scholar 

  • Christensen LP (1992) Acetylenes and related compounds in Anthemideae. Phytochemistry 31:7–49

    Article  CAS  Google Scholar 

  • Christensen LP, Lam J (1991) Acetylenes and related compounds in Heliantheae. Phytochemistry 30:11–49

    Article  CAS  Google Scholar 

  • Christensen KB, Petersen RK, Petersen S, Kristiansen K, Christensen LP (2009) Activation of PPARγ by metabolites from the flowers of purple coneflower (Echinacea purpurea). J Nat Prod 72:933–937

    Article  CAS  PubMed  Google Scholar 

  • Christodoulopoulou L, Tsoukatou M, Tziveleka LA, Vagias C, Petrakis PV, Roussis V (2005) Piperidinyl amides with insecticidal activity from the maritime plant Otanthus maritimus. J Agric Food Chem 53:1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Cilia-López VG, Juárez-Flores BI, Aguirre-Rivera JR, Reyes-Agüero JA (2010) Analgesic activity of Heliopsis longipes and its effect on the nervous system. Pharm Biol 48:195–200

    Article  PubMed  Google Scholar 

  • Clifford LJ, Nair MG, Rana J, Dewitt DL (2002) Bioactivity of alkamides isolated from Echinacea purpurea (L.) Moench. Phytomedicine 9:249–253

    Article  CAS  PubMed  Google Scholar 

  • Cortez-Espinosa N, Aviña-Verduzco JA, Ramírez-Chávez E, Molina-Torres J, Ríos-Chávez P (2011) Valine and phenylalanine as precursors in the biosynthesis of alkamides in Acmella radicans. Nat Prod Commun 6:857–861

    CAS  PubMed  Google Scholar 

  • Crombie L (1954) Isolation and structure of neo-herculin from Zanthoxylum clava-herculis L. Nature 174:833

    Article  CAS  Google Scholar 

  • Crombie L (1955a) Amides of vegetable origin. Part III. Structure and stereochemistry of neoherculin. J Chem Soc 995–998

  • Crombie L (1955b) Amides of vegetable origin. Part IV. The nature of pellitorine and anacyclin. J Chem Soc 999–1006

  • Crombie L, Tayler JL (1957) Amides of vegetable origin. Part VIII. The constitution and configuration of the sanshoöls. J Chem Soc 2760–2766

  • Crombie L, Krasinski AHA, Manzoor-i-Khuda M (1963) Amides of vegetable origin. Part X. The stereochemistry and synthesis of affinin. J Chem Soc 4970–4976

  • Cruz I, Cheetham JJ, Arnason JT, Yack JE, Smith ML (2014) Alkamides from Echinacea disrupt the fungal cell wall-membrane complex. Phytomedicine 21:435–442

    Article  CAS  PubMed  Google Scholar 

  • Curry J, Aluru M, Mendoza M, Nevarez J, Melendrez M, O´Connell MA (1999) Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci 148:47–57

    Article  CAS  Google Scholar 

  • Dawid C, Henze A, Frank O, Glabasnia A, Rupp M, Büning K, Orlikowski D, Bader M, Hofmann T (2012) Structural and sensory characterization of key pungent and tingling compounds from black pepper (Piper nigrum L.). J Agric Food Chem 60:2884–2895

    Article  CAS  PubMed  Google Scholar 

  • Déciga-Campos M, Rios MY, Aguilar-Guadarrama AB (2010) Antinociceptive effect of Heliopsis longipes extract and affinin in mice. Planta Med 76:665–670

    Article  PubMed  CAS  Google Scholar 

  • Déciga-Campos M, Arriaga-Alba M, Ventura-Martínez R, Aguilar-Guadarrama B, Rios MY (2012) Pharmacological and toxicological profile of extract from Heliopsis longipes and affinin. Drug Dev Res 73:130–137

    Article  CAS  Google Scholar 

  • Dembitsky VM, Shkrob I, Rozentsvet OA (2000) Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum. Phytochemistry 54:965–967

    Article  CAS  PubMed  Google Scholar 

  • Devkota KP, Wilson J, Henrich CJ, McMahon JB, Reilly KM, Beutler JA (2013) Isobutylhydroxyamides from the pericarp of Nepalese Zanthoxylum armatum inhibit NF1-defective tumor cell line growth. J Nat Prod 76:59–63

    Article  CAS  PubMed  Google Scholar 

  • Dhar KL, Atal CK (1967) Occurrence of N-isobutyldeca-trans-2-trans-4-dienamide in Piper longum Linn. and Piper peepuloides Royle. Indian J Chem 5:588–589

    CAS  Google Scholar 

  • Dietz B (2002) Untersuchungen zu den Inhaltsstoffen von Echinacea atrorubens sowie zur Wirkung und Bioverfügbarkeit von Alkamiden. Dissertation, Heinrich-Heine-Universität Düsseldorf

  • Dietz B, Bauer R (2001) The constituents of Echinacea atrorubens roots and aerial parts. Pharm Biol 39:11–15

    Article  CAS  Google Scholar 

  • Dietz B, Heilmann J, Bauer R (2001) Absorption of dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides after oral application of Echinacea purpurea tincture. Planta Med 67:863–864

    Article  CAS  PubMed  Google Scholar 

  • Do Nascimento JC, De Paula VF, David JM, David JP (2012) Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae). Quim Nova 35:2288–2311

    Article  CAS  Google Scholar 

  • Domínguez XA, Sánchez VH, Slim SJ, Jakupovic J, Lehmann L, Bohlmann F (1987) Highly unsaturated amides from Sanvitalia ocymoides. Rev Latinoamer Quim 18:114–115

    Google Scholar 

  • Doskotch RW, Beal JL (1970) The isolation and identification of the numbing principle in Chrysanthemum anethifolium. Lloydia 33:393–394

    CAS  PubMed  Google Scholar 

  • Dossou KSS, Devkota KP, Morton C, Egan JM, Lu G, Beutler JA, Moaddel R (2013) Identification of CB1/CB2 ligands from Zanthoxylum bungeanum. J Nat Prod 76:2060–2064

    Article  CAS  PubMed  Google Scholar 

  • Dunstan WR, Garnett H (1895) Note on the active constituent of the pellitory of medicine. J Chem Soc 67:100–102

    Article  CAS  Google Scholar 

  • Ee GCL, Lim CM, Rahman M, Shaari K, Bong CFJ (2010) Pellitorine, a potential anti-cancer lead compound against HL60 and MCT-7 cell lines and microbial transformation of piperine from Piper nigrum. Molecules 15:2398–2404

    Article  CAS  PubMed  Google Scholar 

  • Ehrendorfer F, Guo YP (2005) Changes in the circumscription of the genus Achillea (Compositae–Anthemideae) and its subdivision. Willdenowia 35:49–54

    Article  Google Scholar 

  • Ehrendorfer F, Guo YP (2006) Multidisciplinary studies on Achillea sensu lato (Compositae–Anthemideae): new data on systematics and phylogeography. Willdenowia 36:69–87

    Article  Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA (1987) Synthesis and insecticidal activity of lipophilic amides. Part 3: influence of chain length and terminal group in N-(2-methylpropyl)-2,4-dienamides. Pestic Sci 18:211–221

    Article  CAS  Google Scholar 

  • Galopin CC, Furrer SM, Goeke A (2004) Pungent and tingling compounds in Asian cuisine. In: Hofmann T, Ho CT, Pickenhagen W (eds) Challenges in taste chemistry and biology, ACS symposium series 867. American Chemical Society, Washington DC

    Google Scholar 

  • Gamboa-Leon R, Chilton WS (2000) Isobutylamide numbing agents of the toothache grass, Ctenium aromaticum. Biochem Syst Ecol 28:1019–1021

    Article  CAS  PubMed  Google Scholar 

  • García-Chávez A, Ramírez-Cháves E, Molina-Torres J (2004) El genero Heliopsis (Heliantheae, Asteraceae) en Mexico y las alcamidas presents en sus raíces. Acta Bot Mex 69:115–131

    Google Scholar 

  • Gerber E (1903) Ueber die chemischen Bestandteile der Parakresse (Spilanthes oleracea, Jacquin). Arch Pharm 241:270–289

    Article  CAS  Google Scholar 

  • Gersdorff WA, Mitlin N (1950) Insecticidal action of American species of Heliopsis. J Econ Entom 43:554–555

    Article  CAS  Google Scholar 

  • Gertsch J (2008) Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system. Planta Med 74:638–650

    Article  CAS  PubMed  Google Scholar 

  • Gertsch J, Schoop R, Kuenzle U, Suter A (2004) Echinacea alkylamides modulate TNF-α gene expression via cannabinoid receptor CB2 and multiple signal transduction pathways. FEBS Lett 577:563–569

    Article  CAS  PubMed  Google Scholar 

  • Gertsch J, Raduner S, Altmann KH (2006) New natural noncannabinoid ligands for cannabinoid type-2 (CB2) receptors. J Recept Signal Transduct Res 26:709–730

    Article  CAS  PubMed  Google Scholar 

  • Goey AKL, Rosing H, Meijerman I, Sparidans RW, Schellens JHM, Beijnen JH (2012) The bioanalysis of the major Echinacea purpurea constituents dodeca-2E,4E,8Z,10E/Z-tetraenoic isobutylamides in human plasma using LC–MS/MS. J Chromatogr B 902:151–156

    Article  CAS  Google Scholar 

  • Greger H (1977) Anthemideae-chemical review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 2. Academic Press, London

    Google Scholar 

  • Greger H (1978) Comparative phytochemistry and systematics of Anacyclus. Biochem Syst Ecol 6:11–17

    Article  CAS  Google Scholar 

  • Greger H (1984) Alkamides: structural relationships, distribution and biological activity. Planta Med 50:366–375

    Article  CAS  PubMed  Google Scholar 

  • Greger H (1985) Vergleichende Phytochemie als biologische Disziplin. Plant Syst Evol 150:1–13

    Article  CAS  Google Scholar 

  • Greger H (1988) Comparative phytochemistry of the alkamides. In: Lam J, Breteler H, Arnason T, Hansen L (eds) Chemistry and biology of naturally-occurring acetylenes and related compounds (NOARC). Elsevier, Amsterdam

    Google Scholar 

  • Greger H, Hofer O (1984) On the pungent principle of Matricaria pubescens. Phytochemistry 23:1173–1174

    Article  CAS  Google Scholar 

  • Greger H, Hofer O (1987) Highly unsaturated isopentyl amides from Achillea wilhelmsii. J Nat Prod 50:1100–1107

    Article  CAS  Google Scholar 

  • Greger H, Hofer O (1989) Polyenoic acid piperideides and other alkamides from Achillea millefolium. Phytochemistry 28:2363–2368

    Article  CAS  Google Scholar 

  • Greger H, Werner A (1990) Comparative HPLC analyses of alkamides within the Achillea millefolium group. Planta Med 56:482–486

    Article  CAS  PubMed  Google Scholar 

  • Greger H, Grenz M, Bohlmann F (1981) Amides from Achillea species and Leucocyclus formosus. Phytochemistry 20:2579–2581

    Article  CAS  Google Scholar 

  • Greger H, Grenz M, Bohlmann F (1982) Piperidides and other amides from Achillea species. Phytochemistry 21:1071–1074

    Article  CAS  Google Scholar 

  • Greger H, Zdero C, Bohlmann F (1983) Weitere ungesättige Amide aus Achillea-Arten. Liebigs Ann Chem 1194–1201

  • Greger H, Zdero C, Bohlmann F (1984) Pyrrolidine and piperidine amides from Achillea. Phytochemistry 23:1503–1505

    Article  CAS  Google Scholar 

  • Greger H, Hofer O, Werner A (1985) New amides from Spilanthes oleracea. Monatsh Chem 116:273–277

  • Greger H, Hofer O, Werner A (1987a) Biosynthetically simple C18-alkamides from Achillea species. Phytochemistry 26:2235–2242

    Article  CAS  Google Scholar 

  • Greger H, Zdero C, Bohlmann F (1987b) Pyrrole amides from Achillea ageratifolia. Phytochemistry 26:2289–2291

    Article  CAS  Google Scholar 

  • Greger H, Zechner G, Hofer O, Vajrodaya S (1996) Bioactive amides from Glycosmis species. J Nat Prod 59:1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Gulland JM, Hopton GU (1930) Pellitorine, the pungent principle of Anacyclus pyrethrum. J Chem Soc (resumed) 6–11

  • Gupta OP, Gupta SC, Dhar KL, Atal CK (1976) Structure of a new amide, filfiline, isolated from Piper officinarum. Indian J Chem 14B:912–913

    CAS  Google Scholar 

  • Hajdu Z, Nicolussi S, Rau M, Lorántfy L, Forgo P, Hohmann J, Csupor D, Gertsch J (2014) Identification of endocannabinoid system-modulating N-alkylamides from Heliopsis helianthoides var. scabra and Lepidium meyenii. J Nat Prod 77:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Satoh K, Kase Y, Ishige A, Kubo M, Sasaki H, Nishikawa S, Kurosawa S, Yakabi K, Nakamura T (2001) Modulatory effect of aliphatic acid amides from Zanthoxylum piperitum on isolated gastrointestinal tract. Planta Med 67:179–181

    Article  CAS  PubMed  Google Scholar 

  • Hatano T, Inada K, Ogawa T, Ito H, Yoshida T (2004) Aliphatic acid amides of the fruits of Zanthoxylum piperitum. Phytochemistry 65:2599–2604

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Márquez L, Martínez I, Dieguez R, Delporte C, Prieto S, Molino-Torres J, Garrido G (2009) Anti-inflammatory effects of ethanolic extract and alkamides-derived from Heliopsis longipes roots. J Ethnopharmacol 124:649–652

    Article  PubMed  CAS  Google Scholar 

  • Herz W, Kulanthaivel P (1985) An amide from Salmea scandens. Phytochemistry 24:173–174

    Article  CAS  Google Scholar 

  • Hinz B, Woelkart K, Bauer R (2007) Alkamides from Echinacea inhibit cyclooxygenase-2 activity in human neuroglioma cells. Biochem Biophys Res Commun 360:441–446

    Article  CAS  PubMed  Google Scholar 

  • Hofer O, Greger H, Robien W, Werner A (1986) 13C NMR and 1H lanthanide induced shifts of naturally occurring alkamides with cyclic amide moieties—amides from Achillea falcata. Tetrahedron 42:2707–2716

    Article  CAS  Google Scholar 

  • Hofer O, Zechner G, Vajrodaya S, Lutz G, Greger H (1995) New anthranilic and methylsulfonylpropenoic acid amides from Thai Glycosmis species. Liebigs Ann 1789–1794

  • Hohmann J, Rédei D, Forgo P, Szabó P, Freund TF, Haller J, Bojnik E, Benyhe, S (2011) Alkamides and a neolignan from Echinacea purpurea and the interaction of alkamides with G-protein-coupled cannabinoid receptors. Phytochemistry 72:1848–1853

  • Hou CC, Chen CH, Yang NS, Chen YP, Lo CP, Wang SY, Tien YJ, Tsai PW, Shyur LF (2010) Comparative metabolomics approach coupled with cell- and gene-based assays for species classification and anti-inflammatory bioactivity validation of Echinacea plants. J Nutr Biochem 21:1045–1059

    Article  CAS  PubMed  Google Scholar 

  • Hou CC, Huang CC, Shyur LF (2011) Echinacea alkamides prevent lipopolysaccharide/d-galactosamine-induced acute hepatic injury through JNK pathway-mediated HO-1 expression. J Agric Food Chem 59:11966–11974

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Zhao L, Zhou XL, Ying M, Wang CJ, Weng J (2012) New alkylamides from pericarps of Zanthoxylum bungeanum. Chin Chem Lett 23:1247–1250

    Article  CAS  Google Scholar 

  • Iseli V, Potterat O, Hagmann L, Egli J, Hamburger M (2007) Characterization of the pungent principles and the essential oil of Zanthoxylum schinifolium pericarp. Pharmazie 62:396–400

    CAS  PubMed  Google Scholar 

  • Jacobson M (1948) Herculin, a pungent insecticidal constituent of southern prickly ash bark. J Amer Chem Soc 70:4234–4237

    Article  CAS  Google Scholar 

  • Jacobson M (1949) The structure of pellitorine. J Amer Chem Soc 71:366–367

    Article  CAS  Google Scholar 

  • Jacobson M (1951) Constituents of Heliopsis species. I. Scabrin, an insecticidal amide from the roots of H. scabra Dunal. J Amer Chem Soc 73:100–103

    Article  CAS  Google Scholar 

  • Jacobson M (1954) Occurrence of a pungent insecticidal principle in American coneflower roots. Science 120:1028–1029

    Article  CAS  PubMed  Google Scholar 

  • Jacobson M (1957a) The structure of spilanthol. Chem Ind (London) 50–51

  • Jacobson M (1957b) Constituents of Heliopsis species. V. Heliopsin, a second insecticidal amide from the roots of H. helianthoides var. scabra. J Amer Chem Soc 79:356–358

    Article  CAS  Google Scholar 

  • Jager H, Meinel L, Dietz B, Lapke C, Bauer R, Merkle HP, Heilmann J (2002) Transport of alkamides from Echinacea species through Caco-2 monolayers. Planta Med 68:469–471

    Article  CAS  PubMed  Google Scholar 

  • Jakupovic J, Schuster A, Bohlmann F, King RM, Robinson H (1986) New lignans and isobutylamides from Heliopsis buphthalmoides. Planta Med 52:18–20

    Article  Google Scholar 

  • Jang KH, Chang YH, Kim DD, Oh KB, Oh U, Shin J (2008) New polyunsaturated fatty acid amides isolated from the seeds of Zanthoxylum piperitum. Arch Pharm Res 31:569–572

    Article  CAS  PubMed  Google Scholar 

  • Jente R, Richter E (1976) Zur Biosynthese des Dehydromatricariaesters. Phytochemistry 15:1673–1679

    Article  CAS  Google Scholar 

  • Jente R, Bonnet PH, Bohlmann F (1972) Über die Inhaltsstoffe von Anacyclus pyrethrum DC. Chem Ber 105:1694–1700

  • Jiang LY, Chen JJ, He S, Sun CR (2009) High-throughput structural elucidation of amides in Mallotus lianus Croiz plant materials by LC–ESI–MS–MS. Chromatographia 70:439–445

    Article  CAS  Google Scholar 

  • Johns T, Graham K, Towers GHN (1982) Molluscicidal activity of affinin and other isobutylamides from the Asteraceae. Phytochemistry 21:2737–2738

    Article  CAS  Google Scholar 

  • Jondiko IJ (1986) A mosquito larvicide in Spilanthes mauritiana. Phytochemistry 25:2289–2290

    Article  CAS  Google Scholar 

  • Kadir HA, Zakaria MB, Kechil AA, Azirun MS (1989) Toxicity and electrophysiological effects of Spilanthes acmella Murr. extracts on Periplaneta americana. Pestic Sci 25:329–335

    Article  CAS  Google Scholar 

  • Kashiwada Y, Ito C, Katagiri H, Mase I, Komatsu K, Namba T, Ikeshiro Y (1997) Amides of the fruit of Zanthoxylum ssp. Phytochemistry 44:1125–1127

    Article  CAS  Google Scholar 

  • Kehie M, Kumaria S, Tandon P, Ramchiary N (2015) Biotechnological advances on in vitro capsaicinoids biosynthesis in Capsicum: a review. Phytochem Rev 14:189–201

    Article  CAS  Google Scholar 

  • Keipert R (2009) Acmella ciliata (H.B.K.) Cassini. Phytochemische und enzymatische Untersuchungen, galenische Präformulierungen. Dissertation, Freie Universität Berlin

  • Keipert R, Melzig MF (2009) Acmella ciliata (H.B.K.) Cassini. Z Phytother 30:44–50

    Article  Google Scholar 

  • Kikuzaki H, Kawabata M, Ishida E, Akazawa Y, Takei Y, Nakatani N (1993) LC–MS Analysis and structural determination of new amides from Javanese long pepper (Piper retrofractum). Biosci Biotech Biochem 57:1329–1333

    Article  CAS  Google Scholar 

  • Kim SC, Chapman KD, Blancaflor EB (2010) Fatty acid amide lipid mediators in plants. Plant Sci 178:411–419

    Article  CAS  Google Scholar 

  • Koul SK, Taneja SC, Agarwal VK, Dhar KL (1988) Minor amides of Piper species. Phytochemistry 27:3523–3527

    Article  CAS  Google Scholar 

  • Kubo I, Matsumoto T, Klocke JA, Kamikawa T (1984) Molluscicidal and insecticidal activities of isobutylamides isolated from Fagara macrophylla. Experientia 40:340–341

    Article  CAS  Google Scholar 

  • Kubo M, Ishii R, Ishino Y, Harada K, Matsui N, Akagi M, Kato E, Hosoda S, Fukuyama Y (2013) Evaluation of constituents of Piper retrofractum fruits on neurotrophic activity. J Nat Prod 76:769–773

    Article  CAS  PubMed  Google Scholar 

  • Kuropka G, Glombitza KW (1987) Further polyenic and polyynic carboxamides and sesamin from Achillea ptarmica. Planta Med 53:440–442

    Article  CAS  PubMed  Google Scholar 

  • Kuropka G, Koch M, Glombitza KW (1986) Säureamide aus Achillea ptarmica. Planta Med 52:244–245

    Article  Google Scholar 

  • LaForge FB, Haller HL, Sullivan WN (1942) The presence of an insecticidal principle in the bark of southern prickly ash. J Am Chem Soc 64:187

    Article  CAS  Google Scholar 

  • LaLonde RT, Wong CF, Hofstead SJ, Morris CD, Gardner LC (1980) N-(2-Methylpropyl)-(E, E)-2,4-decadienamide. A mosquito larvicide from Achillea millefolium L. J Chem Ecol 6:35–48

    Article  CAS  Google Scholar 

  • LaLone CA, Hammer KDP, Wu L, Bae J, Leyva N, Liu Y, Solco AKS, Kraus GA, Murphy PA, Wurtele ES, Kim OK, Seo KII, Widrlechner MP, Birt DF (2007) Echinacea species and alkamides inhibit prostaglandin E2 production in RAW264.7 mouse macrophage cells. J Agric Food Chem 55:7314–7322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarević J, Radulović N, Zlatković B, Palić R (2010) Composition of Achillea distans Willd. subsp. distans root essential oil. Nat Prod Res 24:718–731

    Article  PubMed  CAS  Google Scholar 

  • Leitão da-Cunha EV, de Oliveira Chaves MC (2001) Two amides from Piper tuberculatum fruits. Fitoterapia 72:197–199

    Article  PubMed  Google Scholar 

  • Lennertz RC, Tsunozaki M, Bautista DM, Stucky CL (2010) Physiological basis of tingling paresthesia evoked by hydroxy-alpha-sanshool. J Neurosci 30:4353–4361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard AE, Pereira SL, Sprecher H, Huang YS (2004) Elongation of long-chain fatty acids. Prog Lipid Res 43:36–54

    Article  CAS  PubMed  Google Scholar 

  • Ley JP, Krammer G, Looft J, Reinders G, Bertram HJ (2006a) Structure-activity relationships of trigeminal effects for artificial and naturally occurring alkamides related to spilanthol. In: Bredie WLP, Petersen MA (eds) Flavour science: recent advances and trends. Elsevier, Amsterdam

    Google Scholar 

  • Ley JP, Blings M, Krammer G, Reinders G, Schmidt CO, Bertram HJ (2006b) Isolation and synthesis of acmellonate, a new unsaturated long chain 2-ketolester from Spilanthes acmella. Nat Prod Res 20:798–804

    Article  CAS  PubMed  Google Scholar 

  • Li GP, Shen BC, Zhao JF, Yang XD, Li L (2007) Two new alkamides from Spilanthes callimorpha. J Integr Plant Biol 49:1608–1610

    Article  CAS  Google Scholar 

  • Li K, Zhu W, Fu Q, Ke Y, Jin Y, Liang X (2013) Purification of amide alkaloids from Piper longum L. using preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography. Analyst 138:3313–3320

    Article  CAS  PubMed  Google Scholar 

  • Likhitwitayawuid K, Ruangrungsi N, Lange GL, Decicco CP (1987) Structural elucidation and synthesis of new components isolated from Piper sarmentosum (Piperaceae). Tetrahedron 43:3689–3694

    Article  CAS  Google Scholar 

  • Loder JW, Moorhouse A, Russell GB (1969) Tumour inhibitory plants. Amides of Piper novae-hollandiae (Piperaceae). Aust J Chem 22:1531–1538

    Article  CAS  Google Scholar 

  • López-Bucio J, Acevedo-Hernández G, Ramírez-Chávez E, Molina-Torres J, Herrera-Estrella L (2006) Novel signals for plant development. Curr Opin Plant Biol 9:523–529

    Article  PubMed  CAS  Google Scholar 

  • López-Martínez S, Aguilar-Guadarrama B, Rios MY (2011) Minor alkamides from Heliopsis longipes S.F. Blake (Asteraceae) fresh roots. Phytochem Lett 4:275–279

    Article  CAS  Google Scholar 

  • Loureiro-Rosario S, da Silva AJR, Parente JP (1996) Alkamides from Cissampelos glaberrima. Planta Med 62:376–377

    Article  Google Scholar 

  • Mahringer A, Ardjomand-Woelkart K, Bauer R, Fricker G, Efferth T (2013) Alkamides from Echinacea angustifolia interact with P-glycoprotein of primary brain capillary endothelial cells isolated from porcine brain blood vessels. Planta Med 79:214–218

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Becker H (1984) Spilanthol-related amides from Acmella ciliata. Phytochemistry 23:1781–1783

  • Martin R, Becker H (1985) Amides and other constituents from Acmella ciliata. Phytochemistry 24:2295–2300

    Article  CAS  Google Scholar 

  • Matovic NJ, Hayes PY, Penman K, Lehmann RP, DeVoss JJ (2011) Polyunsaturated alkyl amides from Echinacea: synthesis of diynes, enynes, and dienes. J Org Chem 76:4467–4481

    Article  CAS  PubMed  Google Scholar 

  • Matthias A, Blanchfield JT, Penman KG, Toth I, Lang CS, DeVoss JJ, Lehmann RP (2004) Permeability studies of alkylamides and caffeic acid conjugates from echinacea using a Caco-2-cell monolayer model. J Clin Pharm Ther 29:7–13

    Article  CAS  PubMed  Google Scholar 

  • Menozzi-Smarrito C, Riera CE, Munari C, Le Coutre J, Robert F (2009) Synthesis and evaluation of new alkylamides derived from α-hydroxysanshool, the pungent molecule in Szechuan pepper. J Agric Food Chem 57:1982–1989

    Article  CAS  PubMed  Google Scholar 

  • Merali S, Binns S, Paulin-Levasseur M, Ficker C, Smith M, Baum B, Brovelli E, Arnason JT (2003) Antifungal and anti-inflammatory activity oft he genus Echinacea. Pharm Biol 41:412–420

    Article  CAS  Google Scholar 

  • Mester I (1983) Structural diversity and distribution of alkaloids in the Rutales. In: Waterman PG, Grundon MF (eds) Chemistry and chemical taxonomy of the Rutales. Academic Press, London

    Google Scholar 

  • Minto RE, Blacklock BJ (2008) Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 47:233–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani K, Fukunaga Y, Tanaka O, Takasugi N, Saruwatari YI, Fuwa T, Yamauchi T, Wang J, Jia MR, Li FY, Ling YK (1988) Amides from Huajiao, pericarps of Zanthoxylum bungeanum MAXIM. Chem Pharm Bull 36:2362–2365

    Article  CAS  Google Scholar 

  • Molina-Torres J, Salgado-Garciglia R, Ramírez-Chávez E, Del Rio RE (1996) Purely oleofinic alkamides in Heliopsis longipes and Acmella (Spilanthes oppositifolia). Biochem Syst Ecol 24:43–47

    Article  CAS  Google Scholar 

  • Molina-Torres J, García-Chávez A, Ramírez-Chávez E (1999) Antimicrobial properties of alkamides present in flavouring plants traditionally used in Mesoamerica: affinin and capsaicin. J Ethnopharmacol 64:241–248

    Article  CAS  PubMed  Google Scholar 

  • Molina-Torres J, Salazar-Cabrera CJ, Armenta-Salinas C, Ramírez-Chávez E (2004) Fungistatic and bacteriostatic activities of alkamides from Heliopsis longipes roots: affinin and reduced amides. J Agric Food Chem 52:4700–4704

    Article  CAS  PubMed  Google Scholar 

  • Moreno SC, Carvalho GA, Picanço MC, Morais EGF, Pereira RM (2012) Bioactivity of compounds from Acmella oleracea against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and selectivity to two non-target species. Pest Manag Sci 68:386–393

    Article  CAS  PubMed  Google Scholar 

  • Morikawa T, Matsuda H, Yamaguchi I, Pongpiriyadacha Y, Yoshikawa M (2004) New amides and gastroprotective constituents from the fruit of Piper chaba. Planta Med 70:152–159

    Article  CAS  PubMed  Google Scholar 

  • Morquecho-Contreras A, Méndez-Bravo A, Pelagio-Flores R, Raya-González J, Ortíz-Castro R, López-Bucio J (2010) Characterization of drr1, an alkamide-resistant mutant of Arabidopsis, reveals an important role for small lipid amides in lateral root development and plant senescence. Plant Physiol 152:1659–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad I, Zhao J, Dunbar DC, Khan IA (2002) Constituents of Lepidium meyenii ‘maca’. Phytochemistry 59:105–110

    Article  CAS  PubMed  Google Scholar 

  • Müller-Jakic B, Breu W, Pröbstle A, Redl K, Greger H, Bauer R (1994) In vitro inhibition of cylclooxygenase and 5-lipoxygenase by alkamides from Echinacea and Achillea species. Planta Med 60:37–40

    Article  PubMed  Google Scholar 

  • Murayama Y, Shinozaki K (1931) Über den scharfen Bestandteil von Xanthoxylum piperitum D. C. J Pharm Soc Jpn 51:379–384

    CAS  Google Scholar 

  • Nakatami N, Nagashima M (1992) Pungent alkamides from Spilanthes acmella L. var. oleracea Clarke. Biosci Biotech Biochem 56:759–762

    Article  Google Scholar 

  • Narui T, Takeuchi M, Ishii R, Ishida T, Okuyama T (1995) Studies on the constituents of Piper hancei of spice from Okinawa. Nat Med 49:438–441

    CAS  Google Scholar 

  • Navarrete A, Hong E (1996) Anthelminthic properties of alpha-sanshool from Zanthoxylum liebmannianum. Planta Med 62:250–251

    Article  CAS  PubMed  Google Scholar 

  • Ndom JC, Mbafor JT, Meva´a LM, Kakam Z, Phanuel AS, Ndongo E, Harwood LM, Mpondo TN (2010) New alkamide and ent-kaurane diterpenoid derivatives from Senecio erechtitoides (Asteraceae). Phytochem Lett 3:201–206

    Article  CAS  Google Scholar 

  • Obst K, Paetz S, Backes M, Reichelt KV, Ley JP, Engel KH (2013) Evaluation of unsaturated alkanoic acid amides as maskers of epigallocatechin gallate astringency. J Agric Food Cem 61:4242–4249

    Article  CAS  Google Scholar 

  • Ogura M, Cordell GA, Quinn ML, Leon C, Benoit PS, Soejarto DD, Farnsworth NR (1982) Ethnopharmacologic studies I: rapid solution to a problem—oral use of Heliopsis longipes—by means of a multidisciplinary approach. J Ethnopharmacol 64:215–219

    Article  Google Scholar 

  • Ospina de Nigrinis LS, Olarte Caro J, Nuñez Olarte E (1986) Estudio fitofarmacologico de la fraccion liposoluble de las flores de la Spilanthes americana (Mutis) Parte I: Estudio fitoquimico. Rev Colomb Cienc Quim-Farmac 15:37–47

    CAS  Google Scholar 

  • Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel J, Olsen CE, Boll PM (1997) Phytochemistry of the genus Piper. Phytochemistry 46:597–673

    Article  CAS  Google Scholar 

  • Raduner S, Majewska A, Chen JZ, Xie XQ, Hamon J, Faller B, Altmann KH, Gertsch J (2006) Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J Biol Chem 281:14192–14206

    Article  CAS  PubMed  Google Scholar 

  • Raduner S, Bisson W, Abagyan R, Altmann KH, Gertsch J (2007) Self-assembling cannabinomimetics: supramolecular structures of N-alkyl amides. J Nat Prod 70:1010–1015

    Article  CAS  PubMed  Google Scholar 

  • Rahman MAA, Cho SC, Song J, Mun HT, Moon SS (2007) Dendrazawaynes A and B, antifungal polyacetylenes from Dendranthema zawadskii (Asteraceae). Planta Med 73:1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Chávez E, López-Bucio J, Herrera-Estrella L, Molina-Torres J (2004) Alkamides isolated from plants promote growth and alter root development in Arabidopsis. Plant Physiol 134:1058–1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramírez-Noya D, González-Elizondo MS, Molina-Torres J (2011) Heliopsis suffruticosa (Compositae, Heliantheae), una nueva especie des occidente de Zacatecas. Acta Bot Mex 97:39–47

    Google Scholar 

  • Ramsewak RS, Erickson AJ, Nair MG (1999) Bioactive N-isobutylamides from the flower buds of Spilanthes acmella. Phytochemistry 51:729–732

    Article  CAS  PubMed  Google Scholar 

  • Reisch J, Hussain RA, Adesina SK, Szendrei K (1985) A new amide from Evodia hupehensis fruit hull. J Nat Prod 48:862–863

    Article  CAS  Google Scholar 

  • Riemer B, Hofer O, Greger H (1997) Tryptamine derived amides from Clausena indica. Phytochemistry 45:337–341

    Article  CAS  Google Scholar 

  • Rios MY (2012) Natural alkamides: pharmacology, chemistry and distribution. In: Vallisuta O (ed) Drug discovery research in pharmacognosy. InTech, Rijeka

    Google Scholar 

  • Rios MY, Olivo HF (2014) Natural and synthetic alkamides: applications in pain therapy. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 43. Elsevier, Amsterdam

  • Rios MY, Aguilar-Guadarrama AB, Gutiérrez MdC (2007) Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae). J Ethnopharmacol 110:364–367

    Article  CAS  PubMed  Google Scholar 

  • Rios-Chavez P, Ramirez-Chavez E, Armenta-Salinas C, Molina-Torres L (2003) Acmella radicans var. radicans: in vitro culture establishment and alkamide content. In Vitro Cell Dev Biol Plant 39:37–41

    Article  CAS  Google Scholar 

  • Saadali B, Boriky D, Blaghen M, Vanhaelen M, Talbi M (2001) Alkamides from Artemisia dracunculus. Phytochemistry 58:1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Sasagawa M, Cech NB, Gray DE, Elmer GW, Wenner CA (2006) Echinacea alkylamides inhibit interleukin-2 production by Jurkat T cells. Int Immunopharmacol 6:1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Thakur M, Chauhan NS, Dixit VK (2009) Evaluation of the anabolic, aphrodisiac and reproductive activity of Anacyclus pyrethrum DC in male rats. Sci Pharm 77:97–110

    Article  CAS  Google Scholar 

  • Sharma V, Thakur M, Chauhan NS, Dixit VK (2010) Effects of petroleum ether extract of Anacyclus pyrethrum DC. on sexual behavior in male rats. J Chin Integr Med 8:767–773

    Google Scholar 

  • Sharma V, Boonen J, Chauhan NS, Thakur M, DeSpiegeleer B, Dixit VK (2011) Spilanthes acmella ethanolic extract: LC-MS alkylamide profiling and its effects on sexual behavior in male rats. Phytomedicine 18:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Boonen J, De Spiegeleer B, Dixit VK (2013) Androgenic and spermatogenic activity of alkamide-rich ethanol solution extract of Anacyclus pyrethrum DC. Phytother Res 27:99–106

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Takeda Y, Zhang RS, Tong RX, Kitagawa I (1992) Indonesian medicinal plants III. On the constituents of the bark of Fagara rhetza (Rutaceae). (1): alkaloids, phenylpropanoids, and acid amide. Chem Pharm Bull 40:2325–2330

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui BS, Gulzar T, Mahmood A, Begum S, Khan B, Afshan F (2004) New insecticidal amides from petroleum ether extract of dried Piper nigrum L. whole fruits. Chem Pharm Bull 52:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Simas NK, Da Dellamora ECL, Schripsema J, Salgueiro Lage CL, de Oliveira Filho AM, Wessjohann L, Porzel A, Kuster RM (2013) Acetylenic 2- phenylethylamides and new isobutylamides from Acmella oleracea (L.) R. K. Jansen, a Brazilian spice with larvicidal activity on Aedes aegypti. Phytochem Lett 6:67–72

    Article  CAS  Google Scholar 

  • Singh J, Dhar KL, Atal CK (1971) Studies on the genus Piper-XII. Structure of trichonine, a new N-pyrrolidinyl eicosa-trans-2, trans-4 dienamide. Tetrahedron Lett 2119–2120

  • Sittie AA, Lemmich E, Olsen CE, Hviid L, Christensen SB (1998) Alkamides from Phyllanthus fraternus. Planta Med 64:192–193

    Article  CAS  PubMed  Google Scholar 

  • Spelman K, Depoix D, McCray M, Mouray E, Grellier P (2011) The traditional medicine Spilanthes acmella, and the alkylamides spilanthol and undeca-2E-ene-8,10-diynoic acid isobutylamide, demonstrate in vitro and in vivo antimalarial activity. Phytother Res 25:1098–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strunz GM (2000) Unsaturated amides from Piper species (Piperaceae). In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 24. Elsevier, Amsterdam

  • Sugai E, Morimitsu Y, Iwasaki Y, Morita A, Watanabe T, Kubota K (2005a) Pungent qualities of sanshool-related compounds evaluated by a sensory test and activation of rat TRPV1. Biosci Biotechnol Biochem 69:1951–1957

    Article  CAS  PubMed  Google Scholar 

  • Sugai E, Morimitsu Y, Kubota K (2005b) Quantitative analysis of sanshool compounds in Japanese pepper (Xanthoxylum piperitum DC.) and their pungent characteristics. Biosci Biotechnol Biochem 69:1958–1962

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Pei S, Pan Y, Shen Z (2007) Rapid structural determination of amides in Piper longum by high-performance liquid chromatography combined with ion trap mass spectrometry. Rapid Commun Mass Spectrom 21:1497–1503

    Article  CAS  PubMed  Google Scholar 

  • Tackie AN, Dwuma-Badu D, Ayim JSK, ElSohly HN, Knapp JE, Slatkin DJ, Schiff PL Jr (1975) N-Isobutyloctadeca-trans-2-trans-4-dienamide: a new constituent of Piper guineense. Phytochemistry 14:1888–1889

    Article  CAS  Google Scholar 

  • Tang GH, Chen DM, Qiu BY, Sheng L, Wang YH, Hu GW, Zhao FW, Ma LJ, Wang H, Huang QQ, Xu JJ, Long CL, Li J (2011) Cytotoxic amide alkaloids from Piper boehmeriaefolium. J Nat Prod 74:45–49

    Article  CAS  PubMed  Google Scholar 

  • Thomsen MO, Fretté XC, Christensen KB, Christensen LB, Grevsen K (2012) Seasonal variations in the concentrations of lipophilic compounds and phenolic acids in the roots of Echinacea purpurea and Echinacea pallida. J Agric Food Chem 60:12131–12141

    Article  CAS  PubMed  Google Scholar 

  • Tofern B, Mann P, Kaloga M, Jenett-Siems K, Witte L, Eich E (1999) Aliphatic pyrrolidine amides from two tropical convolvulaceous species. Phytochemistry 52:1437–1441

    Article  CAS  Google Scholar 

  • Tsao R, Attygalle AB, Schroeder FC, Marvin CH, McGarvey BD (2003) Isobutylamides of unsaturated fatty acids from Chrysanthemum morifolium associated with host-plant resistance against the western flower thrips. J Nat Prod 66:1229–1231

    Article  CAS  PubMed  Google Scholar 

  • Uttaro AD (2006) Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life 58:563–571

    Article  CAS  PubMed  Google Scholar 

  • Veryser L, Taevernier L, Roche N, Peremans K, Burvenich C, De Spiegeleer B (2014) Quantitative transdermal behavior of pellitorine from Anacyclus pyrethrum extract. Phytomedicine 21:1801–1807

    Article  CAS  PubMed  Google Scholar 

  • Wagner H, Breu W, Willer F, Wierer M, Remiger P, Schwenker G (1989) In vitro inhibition of arachidonate metabolism by some alkamides and prenylated phenols. Planta Med 55:566–567

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Y, McNeil B, Harvey LM (2007) Maca: an Andean crop with multi-pharmacological functions. Food Res Int 40:783–792

    Article  Google Scholar 

  • Wansi JD, Nwozo SO, Mbaze LM, Devkota KP, Moladje SMD, Fomum ZT, Sewald N (2009) Amides from the stem bark of Fagara macrophylla. Planta Med 75:517–521

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Li W, Koike K, Pei Y, Chen Y, Nikaido T (2004) New amide alkaloids from the roots of Piper nigrum. J Nat Prod 67:1005–1009

    Article  CAS  PubMed  Google Scholar 

  • Winterfeldt E (1963) Strukturaufklärung und Synthese einer Thiophenverbindung aus Chrysanthemum frutescens L. Chem Ber 96:3349–3358

  • Woelkart K, Bauer R (2007) The role of alkamides as an active principle of Echinacea. Planta Med 73:615–623

    Article  CAS  PubMed  Google Scholar 

  • Woelkart K, Xu W, Pei Y, Makriyannis A, Picone RP, Bauer R (2005) The endocannabinoid system as a target for alkamides from Echinacea angustifolia roots. Planta Med 71:701–705

    Article  CAS  PubMed  Google Scholar 

  • Woelkart K, Frye RF, Derendorf H, Bauer R, Butterweck V (2009) Pharmacokinetics and tissue distribution of dodeca-2E,4E,8E,10E/Z-tetraenoic acid isobutylamides after oral administration in rats. Planta Med 75:1306–1313

    Article  CAS  PubMed  Google Scholar 

  • Xiong QB, Shi DW, Yamamoto H, Mizuno M (1997) Alkylamides from pericarps of Zanthoxylum bungeanum. Phytochemistry 46:1123–1126

    Article  CAS  Google Scholar 

  • Yang X (2008) Aroma constituents and alkylamides of red and green Huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium). J Agric Food Chem 56:1689–1696

    Article  CAS  PubMed  Google Scholar 

  • Yasuda I, Takeya K, Itokawa H (1980) The geometric structure of spilanthol. Chem Pharm Bull 28:2251–2253

    Article  CAS  Google Scholar 

  • Yasuda I, Takeya K, Itokawa H (1981a) Structures of amides from Asiasarum heterotropoides Maek. var. mandshuricum Maek. Chem Pharm Bull 29:564–566

    Article  Google Scholar 

  • Yasuda I, Takeya K, Itokawa H (1981b) Two new pungent principles isolated from the pericarps of Zanthoxylum ailanthoides. Chem Pharm Bull 29:1791–1793

    Article  CAS  Google Scholar 

  • Yasuda I, Takeya K, Itokawa H (1982) Distribution of unsaturated aliphatic acid amides in Japanese Zanthoxylum species. Phytochemistry 21:1295–1298

    Article  CAS  Google Scholar 

  • Youssef DTA, van Soest RWM, Fusetani N (2003) Callyspongamide A, a new cytotoxic polyacetylenic amide from the Red Sea sponge Callyspongia fistularis. J Nat Prod 66:861–862

    Article  CAS  PubMed  Google Scholar 

  • Zdero C, Bohlmann F, King RM, Lander NS (1988) An isobutylamide and beyerene derivatives from Brachycome species. Phytochemistry 27:2984–2985

    Article  CAS  Google Scholar 

  • Zhang F, Chu CH, Xu Q, Fu SP, Hu JH, Xiao HB, Liang XM (2005) A new amide from Asarum forbesii Maxim. J Asian Nat Prod Res 7:1–5

    Article  PubMed  CAS  Google Scholar 

  • Zhao JP, Muhammad I, Dunbar DC, Mustafa J, Khan IA (2005) New alkamides from Maca (Lepidium meyenii). J Agric Food Chem 53:690–693

    Article  CAS  PubMed  Google Scholar 

  • Zheng BL, He K, Kim CH, Rogers L, Shao Y, Huang ZY, Lu Y, Yan SJ, Qien LC, Zheng QY (2000) Effect of a lipid extract from Lepidium meyenii on sexual behavior in mice and rats. Urology 55:598–602

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Greger.

Additional information

Dedicated to my teacher and friend the late Professor Robert Hegnauer, University of Leiden, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greger, H. Alkamides: a critical reconsideration of a multifunctional class of unsaturated fatty acid amides. Phytochem Rev 15, 729–770 (2016). https://doi.org/10.1007/s11101-015-9418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9418-0

Keywords

Navigation