Skip to main content
Log in

Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Fertility and flower development are both controlled in part by jasmonates, fatty acid-derived mediators produced via the activity of 13-lipoxygenases (13-LOXs). The Arabidopsis thaliana Columbia-0 reference genome is predicted to encode four of these enzymes and it is already known that one of these, LOX2, is dispensable for fertility. In this study, the roles of the other three 13-LOXs (LOX3, LOX4 and LOX6) were investigated in single and double mutants. Four independent lox3 lox4 double mutants assembled with different mutated lox3 and lox4 alleles had fully penetrant floral phenotypes, displaying abnormal anther maturation and defective dehiscence. The plants were no longer self-fertile and pollen was not viable. Fertility in the double mutant was restored genetically by complementation with either the LOX3 or the LOX4 cDNAs and biochemically with exogenous jasmonic acid. Furthermore, deficiency in LOX3 and LOX4 causes developmental dysfunctions, compared to wild type; lox3 lox4 double mutants are taller and develop more inflorescence shoots and flowers. Further analysis revealed that developmental arrest in the lox3 lox4 inflorescence occurs with the production of an abnormal carpelloid flower. This distinguishes lox3 lox4 mutants from the wild type where developmentally typical flower buds are the terminal inflorescence structures observed in both the laboratory and in nature. Our studies of lox3 lox4 as well as other jasmonic acid biosynthesis and perception mutants show that this plant hormone is not only required for male fertility but also involved in global proliferative arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LOX:

Lipoxygenase

AOS:

Allene oxide synthase

DAD1:

Defective in anther dehiscence1

JA:

Jasmonic acid

LNA:

α-linolenic acid

CaMV 35S promoter:

Cauliflower mosaic virus promoter

WT:

Wild type

FA:

Fatty acid

GPA:

Global proliferative arrest

References

  • Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    Article  PubMed  CAS  Google Scholar 

  • Andreou A, Feussner I (2009) Lipoxygenases: structure and reaction mechanism. Phytochemistry 70:1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MH (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505

    Article  PubMed  CAS  Google Scholar 

  • Bannenberg G, Martínez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85–95

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679

    Article  PubMed  CAS  Google Scholar 

  • Bomblies K, Dagenais N, Weigel D (1999) Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2. Dev Biol 216:260–264

    Article  PubMed  CAS  Google Scholar 

  • Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A (2007) UniProtKB/Swiss-Prot. Methods Mol Biol 406:89–112

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  PubMed  CAS  Google Scholar 

  • Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, Bellvert F, Bertrand C, Bendahmane M (2009) Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J 60:1070–1080

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2009) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Dubugnon L (2009) Detritivorous crustaceans become herbivores on jasmonate-deficient plants. Proc Natl Acad Sci U S A 106:935–940

    Article  PubMed  CAS  Google Scholar 

  • Feys B, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin Coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759

    Article  PubMed  CAS  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    Article  PubMed  CAS  Google Scholar 

  • Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender JL, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidospsis. J Biol Chem 284:34506–34513

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hensel LL, Nelson MA, Richmond TA, Bleecker AB (1994) The fate of inflorescence meristems is controlled by developing fruits in Arabidopsis. Plant Physiol 106:863–876

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The defective in anther dehiscience gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19:3516–3529

    Article  PubMed  CAS  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  PubMed  CAS  Google Scholar 

  • Li L, Li C, Howe GA (2001) Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol 127:1414–1417

    Article  PubMed  CAS  Google Scholar 

  • Mandaokar A, Browse J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149:851–862

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    Article  PubMed  CAS  Google Scholar 

  • Minor W, Steczko J, Stec B, Otwinowski Z, Bolin JT, Walter R, Axelrod B (1996) Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution. Biochemistry 35:10687–10701

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Ma H (1997) Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9:393–408

    Article  PubMed  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    Article  PubMed  Google Scholar 

  • Riemann M, Riemann M, Takano M (2008) Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signalling. Plant Cell Environ 31:783–792

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1061

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Pratt DA, Porter NA, Brash AR (2007) Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol 14:473–488

    Article  PubMed  CAS  Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis thaliana. Plant Physiol 152:1940–1950

    Article  PubMed  CAS  Google Scholar 

  • Skrzypczak-Jankun E, Bross RA, Carroll RT, Dunham WR, Funk MO Jr (2001) Three-dimensional structure of a purple lipoxygenase. J Am Chem Soc 123:10814–10820

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97:10625–10630

    Article  PubMed  CAS  Google Scholar 

  • von Malek B, van der Graaff E, Schneitz K, Keller B (2002) The Arabidopsis male-sterile mutant dde2–2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192

    Article  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2002) How to transform Arabidopsis. In: Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

Download references

Acknowledgments

We are grateful to Nicolas Guex for helping with sequence analysis and helpful comments, Shunping Yan for some photographs, Karolina Pajerowska-Mukthar and Ivan Acosta for constructive discussion. Funding was provided by NSF2010 grant to XD, Swiss NSF grant 3100A0_122441 to EEF, and by a Bourse pour l’Egalité des Chances at the University of Lausanne to DC. Author contributions: DC performed most experiments, GW prepared transgenic 35S::lox4 plants. DC, XD and EEF conceived experiments and DC and EEF wrote the paper, EEF made field observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Caldelari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Fig. 1

Amino acid sequence alignment of LOX3 and LOX4. [] Indicates the amino acids in the fatty acid binding pocket, * indicates identical amino acids, and: indicates amino acids that are similar. The frame shows the single amino acid change (leucine (L) to valine (V)) in the fatty acid binding pocket, between respectively, LOX3 and LOX4. (1_DOC 32 kb)

Suppl. Fig. 2

Phenotype of the entire plant. 2.S13 is the empty vector control of the silenced LOX2 line, 2.S12 is the silenced LOX2 line, lox6, WT (Col-0), lox3, lox4, lox3 lox4, aos. (TIFF 8131 kb)

Suppl. Fig. 3

Anther phenotype of WT (Col-0), 2.S12 is the silenced LOX2 line, lox6 mutant. (TIFF 6083 kb)

Suppl. Fig. 4

Inflorescence of LOX double mutants. WT, lox3B lox6B, lox4A lox6B, lox3B lox4A, aos. (TIFF 4708 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldelari, D., Wang, G., Farmer, E.E. et al. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol Biol 75, 25–33 (2011). https://doi.org/10.1007/s11103-010-9701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9701-9

Keywords

Navigation