Skip to main content
Log in

Changes in Hg fractionation in soil induced by willow

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

This study investigated the effect of willow (Salix viminalis ×  S. schwerinii) on soil characteristics, including changes in Hg fractionation in the soil solid phase, and Hg accumulation and distribution in pot-grown plants cultivated for 32 and 76 days in aged Hg-contaminated soil (30 mg Hg kg−1DW). Changes in soil pH and organic carbon content as well as in Hg fractionation were monitored in both rhizospheric soil and in soil without plants. Mercury fractionation was performed by a 5-step sequential soil extraction procedure. Organic carbon content increased while pH decreased in the rhizospheric soil. Both chemically defined exchangeable Hg (0.1) and Hg bound to humic and fulvic acids (1.1) decreased in the rhizospheric soil, whereas plant accumulation of Hg increased with cultivation time. The sum of the decrease of these two soil Hg fractions after 76 days of cultivation was approximately equal to the amount of Hg accumulated in plants. Furthermore, the major Hg fractions (Hg bound to residual organic matter (53), sulphides (43), and the residual fraction (2.5)) remained stable. Neither whole plant accumulation of Hg from the soil, approximately 0.2 of total Hg in soil after 76 days cultivation, nor the fraction of total plant Hg in the shoots, which accounted for about 3 of the total plant Hg pool regardless of the cultivation time, were high. The overall results suggest that plants might be suitable for phytostabilization of aged Hg-contaminated soil, where root systems trap bioavailable Hg and help to control both leaching of Hg and re-entrainment of Hg-containing particulates from a contaminated site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H Al-Najar R Schulz V Romheld (2003) ArticleTitlePlant availability of thallium in the rhizosphere of hyperaccumulator plants: a key factor for assessment of phytoextraction Plant Soil 249 97–105 Occurrence Handle10.1023/A:1022544809828 Occurrence Handle1:CAS:528:DC%2BD3sXhsVyrsrs%3D

    Article  CAS  Google Scholar 

  • J L G Azira I Giraldez D Sanchez-Rodas E Morales (2000) ArticleTitleSelectivity assessment of a sequential extraction procedure for metal mobility characterisation using model phases Talanta 52 545–554 Occurrence Handle10.1016/S0039-9140(00)00410-0

    Article  Google Scholar 

  • P R G Barrocas J C Wasserman (1998) Mercury behaviour in sediments from a sub-tropical coastal environment in SE Brazil J C Wasserman E V Silva-Filho R Villas-Boas (Eds) Environmental Geochemistry in the Tropics. Vol. 72 Springer Verlag Heidelberg, Germany 171–184 Occurrence Handle10.1007/BFb0010913

    Chapter  Google Scholar 

  • W Beauford J Barber A R Barringer (1977) ArticleTitleUptake and distribution of mercury within higher plants Physiol. Plant. 39 261–265 Occurrence Handle1:CAS:528:DyaE2sXktVSrsbo%3D Occurrence Handle10.1111/j.1399-3054.1977.tb01880.x

    Article  CAS  Google Scholar 

  • H Biester G Müller H F Schöler (2002) ArticleTitleBinding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants Sci. Total Environ. 284 191–201 Occurrence Handle11846164 Occurrence Handle1:CAS:528:DC%2BD38XmsFSquw%3D%3D Occurrence Handle10.1016/S0048-9697(01)00885-3

    Article  PubMed  CAS  Google Scholar 

  • S P Bizily C L Rugh R B Meagher (2000) ArticleTitlePhytodetoxification of hazardous organomercurials by genetically engineered plants Nat. Biotechnol. 18 213–217 Occurrence Handle10657131 Occurrence Handle1:CAS:528:DC%2BD3cXhtVOltbg%3D Occurrence Handle10.1038/72678

    Article  PubMed  CAS  Google Scholar 

  • FAC (Eidgenössische Anhalt für Agrkulturechemie und Umwelthygienie) 1989. Methoden für Bodenuntersuchungen. Schriftenreihe des FAC Liebefeld. 5. Liebefeld-Bern

  • W J Fitz W W Wenzel H Zhang J Nurmi K Stipek Z Fischerova P Schweiger G Kollensperger L Q Ma G Stingeder (2003) ArticleTitleRhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency Environ. Sci. Technol. 37 5008–5014 Occurrence Handle10.1021/es0300214 Occurrence Handle14620831 Occurrence Handle1:CAS:528:DC%2BD3sXotVakurs%3D

    Article  PubMed  CAS  Google Scholar 

  • D L Godbold A Hütterman (1988) ArticleTitleInhibition of photosynthesis and transpiration in relation to mercury-induced root damage in spruce seedlings Physiol. Plant. 74 270–275 Occurrence Handle1:CAS:528:DyaL1cXmt1Churk%3D Occurrence Handle10.1111/j.1399-3054.1988.tb00631.x

    Article  CAS  Google Scholar 

  • M Greger (1999) Metal bioavailability and bioconcentration in plants M N V Prasad J Hagemeyer (Eds) Heavy metal stress in plants, from molecules to ecosystem Springer Verlag Berlin Heidelberg, Germany 1–27

    Google Scholar 

  • M Greger L Landberg (1999) ArticleTitleUse of willow in phytoextraction Int. J. Phytorem. 1 115–123 Occurrence Handle1:CAS:528:DC%2BD3cXisVKisQ%3D%3D Occurrence Handle10.1080/15226519908500010

    Article  CAS  Google Scholar 

  • M Greger Y D Wang C Neuschütz (2005) ArticleTitleAbsence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species Environ. Pollut. 134 201–208 Occurrence Handle10.1016/j.envpol.2004.08.007 Occurrence Handle15589647 Occurrence Handle1:CAS:528:DC%2BD2cXhtVKltbjK

    Article  PubMed  CAS  Google Scholar 

  • S K Gupta C Aten (1993) ArticleTitleComparison and evaluation of extraction media and their suitability in a simple-model to predict the biological relevance of heavy-metal concentrations in contaminated soils Int. J. Environ. Anal. Chem. 51 25–46 Occurrence Handle1:CAS:528:DyaK3sXms1Chsbc%3D Occurrence Handle10.1080/03067319308027609

    Article  CAS  Google Scholar 

  • D Hammer C Keller (2002) ArticleTitleChanges in the rhizosphere of metal accumulating plants evidenced by chemical extractants J. Environ. Qual. 31 1561–1569 Occurrence Handle12371173 Occurrence Handle1:CAS:528:DC%2BD38XnsFemsL0%3D Occurrence Handle10.2134/jeq2002.1561

    Article  PubMed  CAS  Google Scholar 

  • P Hinsinger (2001) ArticleTitleBioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review Plant Soil 237 173–195 Occurrence Handle10.1023/A:1013351617532 Occurrence Handle1:CAS:528:DC%2BD38XovVWlsQ%3D%3D

    Article  CAS  Google Scholar 

  • P Hinsinger C Plassard C X Tang B Jaillard (2003) ArticleTitleOrigins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review Plant Soil 248 43–59 Occurrence Handle10.1023/A:1022371130939 Occurrence Handle1:CAS:528:DC%2BD3sXhtFCqsr8%3D

    Article  CAS  Google Scholar 

  • SM Keeling RB Stewart CWN Anderson BH Robinson (2003) ArticleTitleNickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation Int. J. Phytorem. 5 235–244 Occurrence Handle1:CAS:528:DC%2BD2cXotlKmtg%3D%3D Occurrence Handle10.1080/713779223

    Article  CAS  Google Scholar 

  • E Lakanen R Ervio (1971) ArticleTitleA comparison of eight extractants for the determination of plant available micronutrients in soils Acta Agr. Fenn. 123 223–232

    Google Scholar 

  • M M Lasat (2002) ArticleTitlePhytoextraction of toxic metals: a review of biological mechanisms J. Environ. Qual. 31 109–120 Occurrence Handle11837415 Occurrence Handle1:CAS:528:DC%2BD38XlvVCgurs%3D Occurrence Handle10.2134/jeq2002.0109

    Article  PubMed  CAS  Google Scholar 

  • M Lenka K K Panda B B Panda (1992) ArticleTitleMonitoring and assessment of mercury pollution in the vicinity of a chloralkali plant IV. Bioconcentration of mercury in in-situ aquatic and terrestrial plants at Ganjam, India Arch. Environ. Con. Tox. 22 195–202 Occurrence Handle1:CAS:528:DyaK38XisVSqurk%3D Occurrence Handle10.1007/BF00213285

    Article  CAS  Google Scholar 

  • Y B Ma N C Uren (1998) ArticleTitleTransformations of heavy metals added to soil – application of a new sequential extraction procedure Geoderma 84 157–168 Occurrence Handle10.1016/S0016-7061(97)00126-2 Occurrence Handle1:CAS:528:DyaK1cXktlaqsrs%3D Occurrence Handle000074504400011

    Article  CAS  ISI  Google Scholar 

  • H Marschner (1995) Mineral nutrition of higher plants Academic press Cambridge

    Google Scholar 

  • R C R Martin-Doimeadios J C Wasserman L F G Bermejo D Amouroux J J B Nevado O F X Donard (2000) ArticleTitleChemical availability of mercury in stream sediments from the Almaden area, Spain J. Environ. Monitor. 2 360–366 Occurrence Handle1:STN:280:DC%2BD3M7osFSlsA%3D%3D Occurrence Handle10.1039/a909597g

    Article  CAS  Google Scholar 

  • G S Miner R Gutierrez L D King (1997) ArticleTitleSoil factors affecting plant concentrations of cadmium, copper, and zinc on sludge-amended soils J. Environ. Qual. 26 989–994 Occurrence Handle1:CAS:528:DyaK2sXlt1Siu74%3D Occurrence Handle10.2134/jeq1997.00472425002600040009x

    Article  CAS  Google Scholar 

  • A Muranyi B Seeling E Ladewig A Jungk (1994) ArticleTitleAcidification in the rhizosphere of rape seedlings and in bulk soil by nitrification and ammonium uptake Z. Pflanzenernähr. Bodenkd. 157 61–65 Occurrence Handle1:CAS:528:DyaK2cXktlCisbk%3D Occurrence Handle10.1002/jpln.19941570111

    Article  CAS  Google Scholar 

  • N Naraho P Gaur (1995) ArticleTitleEffect of cations, including heavy metals, on cadmium uptake by Lemna polyrhiza. L Biometals 8 95–98

    Google Scholar 

  • N W Revis T R Osborne D Sedgley A King (1989) ArticleTitleQuantitative method for determining the concentration of Mercury (II) sulfide in soils and sediments Analyst 114 823–825 Occurrence Handle10.1039/an9891400823 Occurrence Handle1:CAS:528:DyaK3cXnsFOqtA%3D%3D Occurrence HandleA1989AG06800013

    Article  CAS  ISI  Google Scholar 

  • SM Ross (1994) Retention, transformation and mobility of toxic metals in soils SM Ross (Eds) Toxic Metals in Soil–Plant System John Wiley & Sons West Sussex, England 63–152

    Google Scholar 

  • C L Rugh H D Wilde N M Stack D M Thompson A O Summers R B Meagher (1996) ArticleTitleMercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene Proc. Natl. Acad. Sci. USA 93 3182–3187 Occurrence Handle10.1073/pnas.93.8.3182 Occurrence Handle8622910 Occurrence Handle1:CAS:528:DyaK28XisVWisr8%3D

    Article  PubMed  CAS  Google Scholar 

  • D E Salt R D Smith I Raskin (1998) ArticleTitlePhytoremediation Annu. Rev. Plant Phys. 49 643–668 Occurrence Handle1:CAS:528:DyaK1cXjvVSgs7g%3D Occurrence Handle10.1146/annurev.arplant.49.1.643

    Article  CAS  Google Scholar 

  • W H Schroeder J Munthe (1998) ArticleTitleAtmospheric mercury – an overview Atmos. Environ. 32 809–822 Occurrence Handle10.1016/S1352-2310(97)00293-8 Occurrence Handle1:CAS:528:DyaK1cXivFOksbo%3D

    Article  CAS  Google Scholar 

  • E Schuster (1991) ArticleTitleThe behavior of mercury in the soil with special emphasis on complexation and adsorption processes – a review of the literature Water Air Soil Poll. 56 667–680 Occurrence Handle1:CAS:528:DyaK3MXmslykurs%3D Occurrence Handle10.1007/BF00342308

    Article  CAS  Google Scholar 

  • G J Taylor C D Foy (1985) ArticleTitleMechanisms of aluminium tolerance in Triticum aestivum (wheat). IV. The role of ammonium and nitrate nutrition Can. J. Bot. 63 2181–2186 Occurrence Handle1:CAS:528:DyaL28XhsVOktLs%3D Occurrence Handle10.1139/b85-309

    Article  CAS  Google Scholar 

  • D Wallschläger V M Madhukar Desai M Spengler R D Wilken (1998) ArticleTitleMercury speciation in floodplain soils and sediments along a contaminated river transect J. Environ. Qual. 27 1034–1044

    Google Scholar 

  • Y D Wang M Greger (2004) ArticleTitleClonal differences in mercury tolerance, accumulation, and distribution in willow J. Environ. Qual. 33 1779–1785 Occurrence Handle15356238 Occurrence Handle1:CAS:528:DC%2BD2cXotVehsrc%3D

    PubMed  CAS  Google Scholar 

  • W W Wenzel M Bunkowski M Puschenreiter O Horak (2003) ArticleTitleRhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil Environ. Pollut. 23 131–138 Occurrence Handle10.1016/S0269-7491(02)00341-X Occurrence Handle1:CAS:528:DC%2BD3sXitlGjtbY%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Stauffer, C., Keller, C. et al. Changes in Hg fractionation in soil induced by willow. Plant Soil 275, 67–75 (2005). https://doi.org/10.1007/s11104-004-6108-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-004-6108-x

Keywords

Navigation