Skip to main content

Advertisement

Log in

Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Soils and sediments polluted with crude oil are of major environmental concern on various contaminated sites. Outdoors pot experiments were conducted to test the phytodegradation potential of common reed (Phragmites australis) and poplar (Populus nigra × maximowiczii) in fertilised and non-fertilised control treatments. Two topsoils (E, G) of different texture were mixed with crude oil. Soil analysis included hydrocarbon (HC) measurements, detection of labile phosphorus and mineralised nitrogen as well as dehydrogenase activity. Increased HC degradation by native soil biota was clearly related to higher P availability in soil G and to fertilisation in soil E. Except of the non-fertilised common reed treatment, plants did not enhance crude oil degradation. We found even inhibited degradation of high molecular weight HC in the presence of plants together with declining labile phosphorous concentrations due to planting on soil E. Native soil biota were able to use the whole range of crude oil compounds (C10 to C60) as a carbon source in the presence of sufficient nutrient concentrations in soil. This study is the first to show that reduced HC degradation in the higher molecular weight crude oil fraction (C20 to C40) is likely to be a consequence of decreased phosphorus availability for microorganisms in the plant rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York, Chichester, Brisbane, Toronto, Singapore, p 21

    Google Scholar 

  • Alexander M (1995) How toxic are chemicals in soil. Environ Sci Technol 29:2713–2717

    Article  CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeterior Biodegrad 35:317–327

    Article  CAS  Google Scholar 

  • Baumgarten D, Friedle A, Gutwerk D, Grupp A, Hahn R, Jarmer M, Klaas N, Rastetter M, Rombach N, Schnaufer R, Schulz W, Sorg K-P (2002) Analytik der Mineralölkohlenwasserstoffe, Stand der Normung, Methodenvergleich, Bewertung Arbeitskreis Analytik- Untersuchungsmethoden- Bewertung Schriftenreihe Altlastenforum Baden-Würtemberg eV

  • Bergmann W (1993) Ernährungsstörungen bei Kulturpflanzen. Dritte, erweiterte Auflage. Gustav Vischer Verlag, Jena, Stuttgart, pp 112–120

    Google Scholar 

  • Braddock JF, Ruth ML, Catterall PH, Walworth JL, McCarthy KA (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31:2078–2084

    Article  CAS  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdes oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  • Brix H, Sorrel BK, Schierup HH (1996) Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquat Bot 54:151–163

    Article  Google Scholar 

  • Brusseau ML, Jessup RE, Rao SC (1991) Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes. Environ Sci Technol 25:134–142

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Chaineau CH, Rougeux G, Yepremian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JWW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • DIN ISO 16703:2002–2003 Soil quality-determination of mineral oil content by gas chromatography DIN Deutsches Institut für Normung e. V. 2002

  • Ehlers GAC, Loibner AP (2006) Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology: A review of geosorbent characterisation and (bio)availability prediction. Environ Pollut 141:494–512

    Article  PubMed  CAS  Google Scholar 

  • Franco I, Contin M, Bragato G, De Nobili M (2004) Microbiological resilience of soils contaminated with crude oil. Geoderma 121:17–30

    Article  CAS  Google Scholar 

  • Günther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33:203–215

    Article  PubMed  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    Article  PubMed  CAS  Google Scholar 

  • Huesemann MH (1995) Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environ Sci Technol 29:7–18

    Article  CAS  Google Scholar 

  • Hutchinson SL, Schwab AP, Banks MK (2001) Phytoremediation of aged petroleum sludge: Effect of irrigation techniques and scheduling. J Environ Qual 30:1516–1522

    Article  PubMed  CAS  Google Scholar 

  • Killops SD, Al-Jaboori MAHA (1990) Characterisation of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleum. Org Geochem 15:147–160

    Article  CAS  Google Scholar 

  • Lindau CW, Delaune RD, Devai I (2003) Rate of turnover and attenuation of crude oil added to a Louisiana Sagittaria lancifolia freshwater marsh soil. Spill Sci Technol Bull 8:445–449

    Article  CAS  Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    Article  CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346

    Article  PubMed  CAS  Google Scholar 

  • Oudot J, Merlin FX, Pinvidic P (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45:113–125

    Article  CAS  Google Scholar 

  • Pritchard PH, Costa CF (1991) EPA’s Alaska oil spill bioremediation project. Environ Sci Technol 25:372–379

    Article  CAS  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326

    Article  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments – a perspective. Environ Pollut 108:103–112

    Article  PubMed  CAS  Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (1993) Bodenbiologische Arbeitsmethoden, 2nd edn. Springer, Berlin, Heidelberg, pp 252–254

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schüller H (1969) Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Z Pflanzenernähr Bodenk 123:48–63

    Article  Google Scholar 

  • Schwab P, Banks K (1999) Phytoremediation of petroleum-contaminated soils. In bioremediation of contaminated soils. Agronomy Monogr 37:783–795

    Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    Article  CAS  Google Scholar 

  • Slater GF, White HK, Eglinton TI, Reddy CM (2005) Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis. Environ Sci Technol 39:2552–2558

    Article  PubMed  CAS  Google Scholar 

  • Smith VH, Graham DW, Cleland DD (1998) Application of resource-ratio theory to hydrocarbon biodegradation. Environ Sci Technol 32:3386–3395

    Article  CAS  Google Scholar 

  • Tesar M, Reichenauer TG, Sessitsch A (2002) Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol Biochem 34:1883–1892

    Article  CAS  Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soil Sedim 1:37–42

    CAS  Google Scholar 

  • Trapp S, Köhler A, Larsen LC, Zamprano KC, Karlson U (2001) Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. J Soil Sedim 1:71–76

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  CAS  Google Scholar 

  • VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten) 1991 Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik, Methodenbuch Band 1: Die Untersuchung von Böden. VDLUFA-Verlag, Darmstadt, Germany

  • Walworth JL, Woolard CR, Braddock JF, Reynolds CM (1997) Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen: an approach to determining optimum levels. J Soil Contam 6:465–480

    CAS  Google Scholar 

  • Wenzel WW, Salt D, Smith R, Adriano DC (1999) Phytoremediation: A plant–microbe based remediation system. In Bioremediation of conatminated soils. In: Adriano DC, Bollag JM, Frankenberger W, Sims R (eds) SSSA Special Monograph 1999, 37, 457–510, Madison, USA

  • Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173

    Article  CAS  Google Scholar 

  • Wright AL, Weaver RW, Webb JW (1997) Oil bioremediation in salt marsh mesocosms as influence by N and P fertilization, flooding and season. Water Air Soil Pollut 95:179–191

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded through Kommunalkredit Austria by the Austrian Federal Ministry of Agriculture, Forestry, Water Management and Environment (INTERLAND, project package 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Puschenreiter.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterbrunner, R., Wieshammer, G., Hollender, U. et al. Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant Soil 300, 117–126 (2007). https://doi.org/10.1007/s11104-007-9394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9394-2

Keywords

Navigation