Skip to main content

Advertisement

Log in

Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Micronutrient malnutrition, and particularly deficiency in zinc (Zn) and iron (Fe), afflicts over three billion people worldwide, and nearly half of the world’s cereal-growing area is affected by soil Zn deficiency. Wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the progenitor of domesticated durum wheat and bread wheat, offers a valuable source of economically important genetic diversity including grain mineral concentrations. Twenty two wild emmer wheat accessions, representing a wide range of drought resistance capacity, as well as two durum wheat cultivars were examined under two contrasting irrigation regimes (well-watered control and water-limited), for grain yield, total biomass production and grain Zn, Fe and protein concentrations. The wild emmer accessions exhibited high genetic diversity for yield and grain Zn, Fe and protein concentrations under both irrigation regimes, with a considerable potential for improvement of the cultivated wheat. Grain Zn, Fe and protein concentrations were positively correlated with one another. Although irrigation regime significantly affected ranking of genotypes, a few wild emmer accessions were identified for their advantage over durum wheat, having consistently higher grain Zn (e.g., 125 mg kg−1), Fe (85 mg kg−1) and protein (250 g kg−1) concentrations and high yield capacity. Plants grown from seeds originated from both irrigation regimes were also examined for Zn efficiency (Zn deficiency tolerance) on a Zn-deficient calcareous soil. Zinc efficiency, expressed as the ratio of shoot dry matter production under Zn deficiency to Zn fertilization, showed large genetic variation among the genotypes tested. The source of seeds from maternal plants grown under both irrigation regimes had very little effect on Zn efficiency. Several wild emmer accessions revealed combination of high Zn efficiency and drought stress resistance. The results indicate high genetic potential of wild emmer wheat to improve grain Zn, Fe and protein concentrations, Zn deficiency tolerance and drought resistance in cultivated wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aaronsohn A (1910) Agricultural and botanical exploration in Palestine. Bull Plant Ind 180:1–63

    Google Scholar 

  • Alloway BJ (2004) Zinc in soils and crop nutrition. International Zinc Association communications. IZA, Brussel

    Google Scholar 

  • Bagci SA, Ekiz H, Yilmaz A, Cakmak I (2007) Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J Agron Crop Sci 193:198–206

    Article  CAS  Google Scholar 

  • Bonfil DJ, Kafkafi U (2000) Wild wheat adaptation in different soil ecosystems as expressed in the mineral concentration of the seeds. Euphytica 114:123–134

    Article  CAS  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    Article  PubMed  Google Scholar 

  • Bouis HE (2007) The potential of genetically modified food crops to improve human nutrition in developing countries. J Dev Stud 43:79–96

    Article  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cakmak I, Yilmaz A, Ekiz H, Torun B, Erenoglu B, Braun HJ (1996a) Zinc deficiency as a critical nutritional problem in wheat production in Central Anatolia. Plant Soil 180:165–172

    Article  CAS  Google Scholar 

  • Cakmak I, Sari N, Marschner H, Ekiz H, Kalayci M, Yilmaz A, Braun HJ (1996b) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189

    Article  CAS  Google Scholar 

  • Cakmak I, Ekiz H, Yilmaz A, Torun B, Koleli N, Gultekin I, Alkan A, Eker S (1997) Differential response of rye, triticale, bread and durum wheat to zinc deficiency in calcareous soils. Plant Soil 188:1–10

    Article  CAS  Google Scholar 

  • Cakmak I, Torun B, Erenoglu B, Oztürk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A (1998) Morphological and physiological differences in cereals in response to zinc deficiency. Euphytica 100:349–357

    Article  CAS  Google Scholar 

  • Cakmak I, Graham R, Welch RM (2002) Agricultural and molecular genetic approaches to improving nutrition and preventing micronutrient malnutrition globally. In: Cakmak I, Welch RM (eds) Encyclopedia of life support systems. Eolss, Oxford, pp 1075–1099

    Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol AB, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    CAS  Google Scholar 

  • Calderini DF, Ortiz-Monasterio I (2003) Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci 43:141–151

    Article  CAS  Google Scholar 

  • Demment WM, Young MM, Sensenig RL (2003) Providing micronutrients through food-based solutions: a key to human and national development. J Nutr 133:3879–3885

    Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Ekiz H, Bagci SA, Kiral AS, Eker S, Gültekin I, Alkan A, Cakmak I (1998) Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soils. J Plant Nutr 21:2245–2256

    Article  CAS  Google Scholar 

  • FAO (2006) The Statistics Division, United Nations (United Nations, Rome, 2006)

  • Feil B (1997) The inverse yield–protein relationship in cereals: possibilities and limitations for genetically improving the grain protein yield. Trends Agron 1:103–119

    Google Scholar 

  • Feldman M (2001) The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. Lavoisier Tech & Doc, Paris, pp 3–56

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Google Scholar 

  • Garvin DF, Welch RM, Finley JW (2006) Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86:2213–2220

    Article  CAS  Google Scholar 

  • Genc Y, McDonald GK, Graham RD (2000) Effect of seed zinc content on early growth of barley (Hordeum vulgare L.) under low and adequate soil zinc supply. Aust J Agric Res 51:37–46

    Article  CAS  Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126:407–417

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM (1996) Breeding for staple-food crops with high micronutrients density. Agricultural strategies for micronutrients. Working Paper No. 3. International Food Policy Research Institute, Washington, DC

  • Graham RD, Ascher JS, Hynes SC (1992) Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil 146:241–250

    Article  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204

    Google Scholar 

  • Kalayci M, Torun B, Eker S, Aydin M, Ozturk L, Cakmak I (1999) Grain yield, zinc efficiency and zinc concentration of wheat genotypes grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Res 63:87–98

    Article  Google Scholar 

  • Ladizinsky G (1998) Plant evolution under domestication. Kluwer, Dordrecht

    Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace elements in wheat. Food Nutr Bull 21:392–396

    Google Scholar 

  • Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ortiz-Monasterio JI, Sayre KD, Rajaram S, McMahon M (1997) Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci 37:898–904

    Article  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    Article  CAS  Google Scholar 

  • Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ 28:176–191

    Article  Google Scholar 

  • Peleg Z, Saranga Y, Krugman T, Abbo S, Nevo E, Fahima T (2007) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ DOI 10.1111/j.1365-3040.2007.01731.x

  • Peterson CJ, Johnson VA, Mattern PT (1986) Influence of cultivar and environment on mineral and protein concentrations of wheat flour, bran, and grain. Cereal Chem 63:118–186

    Google Scholar 

  • Poletti S, Gruissem W, Sautter C (2004) The nutritional fortification of cereals. Curr Opin Biotechnol 15:162–165

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz Y, Dikeman E (1983) Minerals and protein concentration in hard red winter wheat flours. Cereal Chem 60:80–82

    CAS  Google Scholar 

  • Rengel Z (2001) Micronutrient differences in micronutrient use efficiency in crops. Commun Soil Sci Plant Anal 32:1163–1186

    Article  CAS  Google Scholar 

  • Rengel Z, Graham RD (1995) Importance of seed zinc content for wheat growth on zinc-deficient soil. I. Vegetative growth. Plant Soil 173:259–266

    Article  CAS  Google Scholar 

  • Rengel Z, Graham RD (1996) Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. J Exp Bot 47:217–226

    Article  CAS  Google Scholar 

  • Skovmand B, Reynolds MP, Delacy IH (2001) Searching genetic resources for physiological traits with potential for increasing yield. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, pp 17–28

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Welch RM (1999) Importance of seed mineral nutrient reserves in crop growth and development. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Food Products Press, New York, pp 205–226

    Google Scholar 

  • Welch RM (2001) Micronutrients, agriculture and nutrition; linkage for improved health and well being. In: Singh K, Mori S, Welch RM (eds) Perspectives on the micronutrient nutrition of crops. Scientific Publisher, Jodhpur, pp 247–289

    Google Scholar 

  • Welch RM, Graham RD (1999) New paradigm for world agriculture: meeting human needs. Productive, sustainable nutritious. Field Crops Res 60:1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz A, Ekiz H, Gultekin I, Torun B, Karanlik S, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to HarvestPlus biofortification challenge program (http://www.harvestplus.org), The Israel Science Foundation grant #1089/04, the development found; and the State Planning Organization of the Turkish Republic. We greatly acknowledge S Abbo, A. Avneri and Y. Shkolnik for excellent technical assistance in the field experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Cakmak.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peleg, Z., Saranga, Y., Yazici, A. et al. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306, 57–67 (2008). https://doi.org/10.1007/s11104-007-9417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9417-z

Keywords

Navigation