Skip to main content
Log in

Oak decline in Helsinki portrayed by tree-rings, climate and soil data

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Oak decline has recently been observed in and around Helsinki. Tree-ring widths of pedunculate oak were used to assess pre-mortem growth patterns, their dependence on climatic factors and linkages to soil thickness. Tree-ring chronologies were constructed in three tree vigour classes (healthy, declining and dying oaks). Characteristic “summer response” was found as a positive influence of summer precipitation was the most important climatic factor limiting the radial growth in all vigour classes. On the other hand, a differing “winter response” was found for tree-rings of dying and other classes of oaks. The growth of dying oaks was more sensitive to variations in mid-winter temperatures, due presumably to higher risk of frost damage to their roots. Recent summer droughts, which may have increased the potential for bark necrosis due to reinforcing effects from defoliation in decreasing the capability of oaks to acclimatize to winter frost, may thus have played a role in this decline. Amplified water stress was indicated by dendrochronological parameters on sites with shallow soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr AC-19:716–723 doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Aniol RW (1983) Tree-ring analysis using CATRAS. Dendrochronologia 1:45–53

    Google Scholar 

  • Ashby WC, Fritts HC (1972) Tree growth, air pollution, and climate near LaPorte, Ind. Bull Am Meteorol Soc 53:246–251 doi:10.1175/1520-0477(1972)053<0246:TGAPAC>2.0.CO;2

    Article  Google Scholar 

  • Axelrod DI (1983) Biogeography of oaks in the arcto-tertiary province. Ann Mo Bot Gard 70:629–657 doi:10.2307/2398982

    Article  Google Scholar 

  • Barklund P, Wahlström K (1998) Death of oaks in Sweden since 1987. In: Cech TL, Hartmann G, Tomiczek C (eds) Disease/environment interactions in forest decline. Proceedings of a Workshop on Disease/Environment Interactions in Forest Decline IUFRO Vienna, 1998. Federal Forest Research Center, Vienna, Austria, p 193

    Google Scholar 

  • Bednarz Z, Ptak J (1990) The influence of temperature and precipitation on ring widths of oak (Quercus robur L.) in the Niepolomice forest near Cracow, Southern Poland. Tree-Ring Bull 50:1–10

    Google Scholar 

  • Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–914 doi:10.1890/03-5011

    Article  Google Scholar 

  • Biocca M, Tainter FH, Starkey DA, Oak SW, Williams JG (1993) The persistence of oak decline in the Western North Carolina Nantahala mountains. Castanea 58:178–184

    Google Scholar 

  • Biondi F (1997) Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 15:139–150

    Google Scholar 

  • Biondi F, Swetnam TW (1987) Box-Jenkins models of forest interior tree-ring chronologies. Tree Ring Bull 47:71–96

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311 doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Bräker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitt Forstl Bundes-Vers anst Wien 142:75–102

    Google Scholar 

  • Bréda N, Granier A, Barataud F, Moyne C (1995) Soil water dynamics in an oak stand. Plant Soil 172:17–27 doi:10.1007/BF00020856

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Sci 63:625–644 doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119 doi:10.1007/BF00211153

    Article  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov E (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941 doi:10.1029/2000JD900617

    Article  Google Scholar 

  • Catton HA, St. George S, Remphrey WR (2007) An evaluation of bur oak (Quercus macrocarpa) decline in the urban forest of Winnipeg, Manitoba, Canada. Arboriculture Urban Forestry 33:22–30

    Google Scholar 

  • Cook ER (1985) A time-series analysis approach to tree-ring standardization, Doctoral thesis. University of Arizona, Tucson

    Google Scholar 

  • Cook ER (1987) The decomposition of tree-ring series for environmental studies. Tree Ring Bull 47:37–59

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333 doi:10.1007/s10342-005-0085-3

    Google Scholar 

  • Drexhage M, Huber F, Colin F (1999) Comparison of radial increment and volume growth in stems and roots of Quercus petraea. Plant Soil 217:101–110 doi:10.1023/A:1004647418616

    Article  Google Scholar 

  • Drobyshev I, Anderson S, Sonesson K (2007a) Crown condition dynamics of oak in southern Sweden 1988–1999. Environ Monit Assess 134:199–210 doi:10.1007/s10661-007-9610-9

    Article  PubMed  CAS  Google Scholar 

  • Drobyshev I, Linderson H, Sonesson K (2007b) Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronologia 24:97–108 doi:10.1016/j.dendro.2006.10.004

    Article  Google Scholar 

  • Drobyshev I, Niklasson M, Eggertsson O, Linderson H, Sonesson K (2008) Influence of annual weather on growth of pedunculate oak in southern Sweden. Ann Sci 65:512

    Article  Google Scholar 

  • Dwyer JP, Cutter BE, Wetteroff JJ (1995) A dendrochronological study of black and scarlet oak decline in the Missouri Ozarks. For Ecol Manage 75:69–75 doi:10.1016/0378-1127(95)03537-K

    Article  Google Scholar 

  • Fritts HC (1962) An approach to dendroclimatology: screening by means of multiple regression techniques. J Geophys Res 67:1413–1420 doi:10.1029/JZ067i004p01413

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188 doi:10.1016/S0065-2504(08)60158-0

    Article  Google Scholar 

  • Fritts HC, Smith DG, Cardis CAJW, Budelsky CA (1965) Tree-ring characteristics along a vegetation gradient in Northern Arizona. Ecology 46:393–401 doi:10.2307/1934872

    Article  Google Scholar 

  • Führer E (1998) Oak decline in central Europe: a Synopsis of Hypotheses. In: McManus ML, Liebhold AM (eds) Proceedings: population dynamics, impacts, and integrated management of forest defoliating insects. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. Gen. Tech. Rep. NE-247:7–24

  • Gibbs JN, Greig BJW (1997) Biotic and abiotic factors affecting the dying back of pedunculate oak Quercus robur L. Forestry 70:399–406 doi:10.1093/forestry/70.4.399

    Article  Google Scholar 

  • Göransson H, Wallander H, Ingerslev M, Rosengren U (2006) Estimating the relative nutrient uptake from different soil depths in Quercus robur, Fagus sylvatica and Picea abies. Plant Soil 286:87–97 doi:10.1007/s11104-006-9028-0

    Article  CAS  Google Scholar 

  • Göransson H, Fransson A-M, Jönsson-Belyazid U (2007) Do oaks have different strategies for uptake of N, K and P depending on soil depth? Plant Soil 297:119–125 doi:10.1007/s11104-007-9325-2

    Article  CAS  Google Scholar 

  • Göransson H, Ingerslev M, Wallander H (2008) The vertical distribution of N and K uptake in relation to root distribution and root uptake capacity in mature Quercus robur, Fagus sylvatica and Picea abies stands. Plant Soil 306:129–137 doi:10.1007/s11104-007-9524-x

    Article  CAS  Google Scholar 

  • Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12:657–665 doi:10.1191/0959683602hl578rp

    Article  Google Scholar 

  • Guiot J (1986) ARMA techniques for modelling tree-ring response to climate and for reconstructing variations of paleoclimates. Ecol Modell 33:149–171 doi:10.1016/0304-3800(86)90038-4

    Article  Google Scholar 

  • Hartmann G, Blank R (1992) Winterfrost, Kahlfrass und Prachtkäpferbefall als Faktoren im Ursachenkomplex des Eichensterbens in Norddeutschland. Summary in English: winter frost, insect defoliation and Agrilus biguttatus Fabr. as causal factors of oak decline in northern Germany. Forst Holz 47:443–452

    Google Scholar 

  • Hartmann G, Blank R, Lewark S (1989) Eichensterben in Norddeutschland. Verbreitung, Schadbilder, mögliche Ursachen. Summary in English: oak decline in Northern Germany. Distribution, symptoms, probable causes. Forst Holz 44:475–487

    Google Scholar 

  • Helama S, Timonen M, Lindholm M, Meriläinen J, Eronen M (2005) Extracting long-period climate fluctuations from tree-ring chronologies over timescales of centuries to millennia. Int J Climatol 25:1767–1779 doi:10.1002/joc.1215

    Article  Google Scholar 

  • Helama S, Vartiainen M, Kolström T, Peltola H, Meriläinen J (2008) X-ray microdensitometry applied to subfossil tree-rings: growth characteristics of ancient pines from the southern boreal forest zone in Finland at intra-annual to centennial time-scales. Veg Hist Archaeobot 17:675–686 doi:10.1007/s00334-008-0147-9

    Article  Google Scholar 

  • Hirano T, Morimoto K (1999) Growth reduction of the Japanese black pine corresponding to an air pollution episode. Environ Pollut 106:5–12 doi:10.1016/S0269-7491(99)00063-9

    Article  PubMed  CAS  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–75

    Google Scholar 

  • Huntington E (1914) The climatic factor as illustrated in Arid America. Carnegie Institution Publ 192:1–341

    Google Scholar 

  • Hydrografinen toimisto (1944) Vuosikirja 12 Årsbok 1937–1940. Helsinki. Valtioneuvoston kirjapaino [In Finnish and Swedish]

  • Hydrografinen toimisto (1948) Vuosikirja 13 Årsbok 1941–1945. Helsinki. Valtioneuvoston kirjapaino [In Finnish and Swedish]

  • Jones EW (1959) Quercus L. Biological Flora of the British Isles. J Ecol 47:169–222 doi:10.2307/2257253

    Article  Google Scholar 

  • Jönsson U (2004) Phytophthora species and oak decline—can a weak competitor cause significant root damage in a nonsterilized acidic forest soil? New Phytol 162:211–222 doi:10.1111/j.1469-8137.2004.01016.x

    Article  Google Scholar 

  • Jönsson U, Lundberg L, Sonesson K, Jung T (2003) First records of soilborne Phytophthora species in Swedish oak forests. For Pathol 33:175–179 doi:10.1046/j.1439-0329.2003.00320.x

    Google Scholar 

  • Jönsson U, Jung T, Sonesson K, Rosengren U (2005) Relationships between health of Quercus robur, occurrence of Phytophthora species and site conditions in southern Sweden. Plant Pathol 54:502–511 doi:10.1111/j.1365-3059.2005.01228.x

    Article  CAS  Google Scholar 

  • Jung T, Blaschke H, Oßwald W (2000) Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol 49:706–718 doi:10.1046/j.1365-3059.2000.00521.x

    Article  Google Scholar 

  • Jung T, Cooke DEL, Blaschke H, Duncan JM, Oßwald W (1999) Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol Res 103:785–798 doi:10.1017/S0953756298007734

    Article  Google Scholar 

  • Kuusisto E (2003) Paha kuivuus lisäsi jatkosodan ankeutta. Helsingin Sanomat 12.4.2003:C17

  • Kuusisto E (2004) Kuvaus 1940-luvun poikkeuksellisesta kuivuudesta. Finn Environ 731:48

    Google Scholar 

  • Läänelaid A (2000) Five pine samples represent climate impact as well as eleven pines. University of Joensuu, Faculty of Forestry. Res Notes 108:119–128

    Google Scholar 

  • Mikola P (1950) Puiden kasvun vaihteluista ja niiden merkityksestä kasvututkimuksessa. Summary: on the variations in tree growth and their significance to growth studies. Commun Inst For Fenn 38(5):1–131

    Google Scholar 

  • Monserud RA (1986) Time-series analyses of tree-ring chronologies. For Sci 32:349–372

    Google Scholar 

  • Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Ogle K, Whitham TG, Cobb NS (2000) Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology 81:3237–3243

    Google Scholar 

  • Oosterbaan A, Nabuurs GJ (1991) Relationships between oak decline and groundwater class in The Netherlands. Plant Soil 136:87–93 doi:10.1007/BF02465223

    Article  Google Scholar 

  • Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93

    Article  Google Scholar 

  • Pilcher JR, Gray B (1982) The relationships between oak tree growth and climate in Britain. J Ecol 70:297–304 doi:10.2307/2259880

    Article  Google Scholar 

  • Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Ann Sci 58:237–251 doi:10.1051/forest:2001123

    Article  Google Scholar 

  • Rozas V (2005) Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Ann Sci 62:209–218 doi:10.1051/forest:2005012

    Article  Google Scholar 

  • Schulman MD, Bryson RA (1965) A statistical study of dendroclimatic relationships in South Central Wisconsin. J Appl Meteorol 4:107–111 doi:10.1175/1520-0450(1965)004<0107:ASSODR>2.0.CO;2

    Article  Google Scholar 

  • Seeger M (1930) Erfahrungen über die Eiche in der Rheinebene bei Emmendinger (Baden). Allg Forst- und Jagdtztg 106:201–219

    Google Scholar 

  • Silander J, Järvinen EA (eds) (2004) Vuosien 2002–2003 poikkeuksellisen kuivuuden vaikutukset. Abstract in English: effects of severe drought of 2002/2003. The Finnish Environment 731:1–79

  • Siwecki R, Ufnalski K (1998) Review of oak stand decline with special reference to the role of drought in Poland. Eur J Forest Pathol 28:99–112 doi:10.1111/j.1439-0329.1998.tb01171.x

    Article  Google Scholar 

  • Sonesson K (1999) Oak decline in southern Sweden. Scand J For Res 14:368–375 doi:10.1080/02827589950152692

    Article  Google Scholar 

  • Spiecker H (2002) Tree rings and forest management in Europe. Dendrochronologia 20:191–202 doi:10.1078/1125-7865-00016

    Article  Google Scholar 

  • Tainter FH, Fraedrich SW, Benson DM (1984) The effect of climate on growth, decline, and death of northern red oaks in the Western North Carolina Nantahala Mountains. Castanea 49:127–137

    Google Scholar 

  • Tainter FH, Retzlaff WA, Starkey DA, Oak SW (1990) Decline of radial growth in red oaks is associated with short-term changes in climate. Eur J For Path 20:95–105 doi:10.1111/j.1439-0329.1990.tb01277.x

    Article  Google Scholar 

  • Tessier L, Nola P, Serre-Bachet F (1994) Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytol 126:355–367 doi:10.1111/j.1469-8137.1994.tb03955.x

    Article  Google Scholar 

  • Thomas FM, Hartmann G (1996) Soil and tree water relations in mature oak stands of northern Germany differing in the degree of decline. Ann Sci 53:697–720 doi:10.1051/forest:19960247

    Article  Google Scholar 

  • Thomas FM, Hartmann G (1998) Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant Soil 203:145–158 doi:10.1023/A:1004305410905

    Article  CAS  Google Scholar 

  • Thomas FM, Ahlers U (1999) Effects of excess nitrogen on frost hardiness and freezing injury of above-ground tissue in young oaks (Quercus petraea and Q. robur). New Phytol 144:73–83 doi:10.1046/j.1469-8137.1999.00501.x

    Article  Google Scholar 

  • Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol 32:277–307 doi:10.1046/j.1439-0329.2002.00291.x

    Google Scholar 

  • Thomas FM, Meyer G, Popp M (2004) Effects of defoliation on the frost hardiness and the concentrations of soluble sugars and cyclitols in the bark tissue of pedunculate oak (Quercus robur L.). Ann Sci 61:455–463 doi:10.1051/forest:2004039

    Article  CAS  Google Scholar 

  • Tuomenvirta H (2004) Reliable estimation of climatic variations in Finland. Finn Meteorol Inst Contrib 43:1–79

    Google Scholar 

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of past and future environments. Ecol Stud 183:1–354 doi:10.1007/3-540-31298-6_1

    Article  Google Scholar 

  • van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112 doi:10.1016/j.dendro.2007.03.004

    Article  Google Scholar 

  • Warren WG (1980) On removing the growth trend from dendrochronological data. Tree Ring Bull 40:35–44

    Google Scholar 

  • Ympäristöraportoinnin asiantuntijatyöryhmä (2004) Helsingin kaupungin ympäristöraportti 2003. Environment Centre, City of Helsinki. p 45. [In Finnish]

Download references

Acknowledgements

We thank two anonymous referees for critical review of the manuscript. Oaks were cored in Villa Anneberg under licence from the City of Helsinki (HKR 2007-814). This study was supported by the Academy of Finland (grant #122033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Helama.

Additional information

Responsible Editor: John McPherson Cheeseman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helama, S., Läänelaid, A., Raisio, J. et al. Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant Soil 319, 163–174 (2009). https://doi.org/10.1007/s11104-008-9858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9858-z

Keywords

Navigation