Skip to main content
Log in

Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Genotypic differences in acquiring immobile P exist among species or cultivars within one species. We investigated the P-efficiency mechanisms of rapeseed (Brassica napus L.) in low P soil by measuring plant growth, P acquisition and rhizosphere properties. Two genotypes with different P efficiencies were grown in a root-compartment experiment under low P (P15: 15 mg P kg−1) and high P (P100: 100 mg P kg−1) treatments. The P-efficient genotype produced more biomass, and had a high seed yield and high P acquisition efficiency under low P treatment. Under both P treatments, both genotypes decreased inorganic P (Pi) and organic P (Po) fractions in the rhizosphere soil. However there was no decrease in NaHCO3-Po at P100. For the P15 treatment, the concentrations of NaHCO3-Po and NaOH-Po were negatively correlated with soil acid phosphatase activity. The P-efficient genotype 102 differed from the P-inefficient genotype 105 in the following ways. In the rhizosphere the soil pH was lower, acid phosphatase activity was higher, and depletion of P was greater. Further the depletion zones were wider. These results suggested that improving P efficiency based on the character of P efficiency acquisition in P-efficient genotype would be a potential approach for maintaining rapeseed yield potential in soils with low P bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477–480 doi:10.1126/science.248.4954.477

    Article  PubMed  CAS  Google Scholar 

  • Akhtar MS, Oki Y, Adachi T (2008) Genetic variability in phosphorus acquisition and utilization efficiency from sparingly soluble P-sources by Brassica cultivars under P-stress environment. J Agron Crop Sci 194:380–392 doi:10.1111/j.1439-037X.2008.00326.x

    Article  CAS  Google Scholar 

  • Asmar F, Gahoonia TS, Nielsen NE (1995) Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil. Plant Soil 172(1):117–122 doi:10.1007/BF00020865

    Article  CAS  Google Scholar 

  • Barrow NJ (1983) A mechanistic model for describing the sorption and desorption of phosphate by soil. Eur J Soil Sci 34(4):733–750

    CAS  Google Scholar 

  • Barrow NJ (1984) Modelling the effects of pH on phosphate sorption by soils. Eur J Soil Sci 35(2):283–297 doi:10.1111/j.1365-2389.1984.tb00283.x

    Article  CAS  Google Scholar 

  • Chen HJ (2003) Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. For Ecol Manage 178:301–310 doi:10.1016/S0378-1127(02)00478-4

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47 doi:10.1023/A:1020809400075

    Article  CAS  Google Scholar 

  • Foehse D, Jungk A (1983) Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74(3):359–368 doi:10.1007/BF02181353

    Article  CAS  Google Scholar 

  • George TS, Gregory PJ, Robinson JS, Buresh RJ (2002) Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species. Plant Soil 246:65–73 doi:10.1023/A:1021523515707

    Article  CAS  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1981) Membrane mediated decrease in root exudation responsible for phosphorus inhibition of vesicular–arbuscular mycorrhiza formation. Plant Physiol 68:548–552 doi:10.1104/pp.68.3.548

    Article  PubMed  CAS  Google Scholar 

  • Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and waste water. American Public Health Association, Washington, DC

    Google Scholar 

  • Guo F, Yost RS, Hue NV, Evensen CI, Silva JA (2000) Changes in phosphorus fractions in soils under intensive plant growth. Soil Sci Soc Am J 64:1681–1689

    CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982a) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    CAS  Google Scholar 

  • Hedley MJ, White RE, Nye PH (1982b) Plant induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. III. Changes in L value, soil phosphate fractions and phosphatase activity. New Phytol 91:45–56 doi:10.1111/j.1469-8137.1982.tb03291.x

    Article  CAS  Google Scholar 

  • Hendriks L, Claassen N, Jungk A (1981) Phosphatverarmung des wurzelnahen Bodens und Phosphataufnahme von Mais und Raps. Z Pflanzenern Bodenkd 144:486–499 doi:10.1002/jpln.19811440507

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195 doi:10.1023/A:1013351617532

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59 doi:10.1023/A:1022371130939

    Article  CAS  Google Scholar 

  • Hoffland E, Boogaard RVD, Nelemans JA, Findenegg GR (1992) Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol 122:675–680

    CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Jaillard B, Plassard C, Hinsinger P (2002) Measurements of H+ fluxes and concentrations in the rhizosphere. In: Rengel Z (ed) Handbook of Soil Acidity. Marcel Dekker, New York (in press)

    Google Scholar 

  • Lewis DG, Quirk JP (1967) Phosphate diffusion in soils and uptake by plants. II. Uptake by wheat plants. Plant Soil 26:119–128 doi:10.1007/BF01978679

    Article  CAS  Google Scholar 

  • Li M, Shinano T, Tadano T (1997) Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Sci Plant Nutr 43:237–245

    CAS  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196 doi:10.1073/pnas.0704591104

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Mi GH, Chen FJ, Zhang JH, Zhang FS (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Sci 167:217–223 doi:10.1016/j.plantsci.2004.02.026

    Article  CAS  Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256 doi:10.1104/pp.010934

    Article  PubMed  Google Scholar 

  • Loss SP, Robson AD, Ritchie GSP (1993) H+/OH excretion and nutrient uptake in upper and lower parts of lupin (Lupin angustifolius) root systems. Ann Bot (Lond) 72:315–320 doi:10.1006/anbo.1993.1113

    Article  CAS  Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467 doi:10.1046/j.1365-3040.2001.00695.x

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Römheld V, Horst WJ, Martin P (1986) Root-induced changes in the rhizosphere: importance for the mineral nutrition of plants. Z Pflanzenern Bodenkd 149(4):441–456 doi:10.1002/jpln.19861490408

    Article  CAS  Google Scholar 

  • Marschner P, Solaiman Z, Rengel Z (2007) Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biol Biochem 39:87–98 doi:10.1016/j.soilbio.2006.06.014

    Article  CAS  Google Scholar 

  • Moorby H, Nye PH, White RE (1985) The influence of nitrate nutrition on H+ efflux by young rape plants. Plant Soil 84:403–413 doi:10.1007/BF02275477

    Article  CAS  Google Scholar 

  • Moorby H, White RE, Nye PH (1988) The influence of phosphate nutrition on H+ efflux from the roots of young rape plants. Plant Soil 105:247–256 doi:10.1007/BF02376789

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36 doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nanzyo M, Watanabe Y (1982) Diffuse reflectance infrared spectra and ion-adsorption properties of the phosphate surface complex on goethite. Soil Sci Plant Nutr 28(3):359–368

    Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512 doi:10.1111/j.1365-3040.2007.01734.x

    Article  PubMed  CAS  Google Scholar 

  • Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2006) Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant Soil 281:109–120 doi:10.1007/s11104-005-3936-2

    Article  CAS  Google Scholar 

  • Ohwaki Y, Hirata H (1992) Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. Soil Sci Plant Nutr 38(2):235–243

    CAS  Google Scholar 

  • Okalebo JR, Gathua KW, Woomer PL (1993) Laboratory methods of soil and plant analysis: a working manual. Tropical Soil Biology and Fertility Programme, Nairobi, Kenya

    Google Scholar 

  • Osborne L, Rengel Z (2002) Genotypic differences in wheat for uptake and utilisation of P from iron phosphate. Aust J Agric Res 53:837–844 doi:10.1071/AR01101

    Article  CAS  Google Scholar 

  • Radersma S, Grierson PF (2004) Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil 259:209–219 doi:10.1023/B:PLSO.0000020970.40167.40

    Article  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693 doi:10.1146/annurev.arplant.50.1.665

    Article  PubMed  CAS  Google Scholar 

  • Ruiz L, Arvieu JC (1990) Measurement of pH gradients in the rhizosphere. Symbiosis 9:71–75

    Google Scholar 

  • Scherer HW, Sharma SP (2002) Phosphorus fractions and phosphorus delivery potential of aluvisol derived from loess amended with organic material. Biol Fertil Soils 35:414–419 doi:10.1007/s00374-002-0488-y

    Article  CAS  Google Scholar 

  • Schwab SM, Menge JA, Leonard RT (1983) Quantitative and qualitative effects of phosphorus on extracts and exudates of Sudan grass roots in relation to vesicular–arbuscular mycorrhiza formation. Plant Physiol 73:761–765 doi:10.1104/pp.73.3.761

    Article  PubMed  CAS  Google Scholar 

  • Schweiger PF, Robson AD, Brarrow NJ, Abbott LK (2007) Arbuscular mycorrhizal fungi from three genera induce two-phase plant growth responses on a high P-fixing soil. Plant Soil 292:181–192 doi:10.1007/s11104-007-9214-8

    Article  CAS  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125 doi:10.1007/s11104-004-2725-7

    Article  CAS  Google Scholar 

  • Sharma SP, Subehia SK (2003) Effects of twenty-five years of fertilizer use on maize and wheat yields and quality of an acidic soil in the western Himalayas. Exp Agric 39:55–64 doi:10.1017/S0014479702001035

    Article  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307 doi:10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  • Tadano T, Ozawa K, Sakai H, Osaki M, Matsui H (1993) Secretion of acid phosphatase by the roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil 56:95–98 doi:10.1007/BF00024992

    Article  Google Scholar 

  • Tang C, Unkovich MJ, Bowden JW (1999) Factors affecting soil acidification under legumes III. Effects of nitrate supply. New Phytol 143:513–521 doi:10.1046/j.1469-8137.1999.00475.x

    Article  CAS  Google Scholar 

  • Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3:199–204 doi:10.1007/BF00640630

    Article  CAS  Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian Society of Soil Science. CRC, Lewis, Boca Raton, FL, pp 75–86

    Google Scholar 

  • Verma S, Subehia SK, Sharma SP (2005) Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biol Fertil Soils 41:295–300 doi:10.1007/s00374-004-0810-y

    Article  CAS  Google Scholar 

  • Wang Z, Shen J, Zhang F (2006) Cluster-root formation, carboxylate exudation and proton release of Lupinus pilosus Murr. as affected by medium pH and P deficiency. Plant Soil 287:247–256 doi:10.1007/s11104-006-9071-x

    Article  CAS  Google Scholar 

  • Westerman RL (1990) Soil testing and plant analysis, 3rd edn. Soil Science Society of America, Madison, WI

    Google Scholar 

  • Wissuwa M, Ae N (2001) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breed 120:43–48 doi:10.1046/j.1439-0523.2001.00561.x

    Article  CAS  Google Scholar 

  • Yan F, Zhu YY, Müller C, Zörb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63 doi:10.1104/pp.010869

    Article  PubMed  CAS  Google Scholar 

  • Zhang FS, Ma J, Cao YP (1997) Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raghanus satiuvs L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–264 doi:10.1023/A:1004214410785

    Article  CAS  Google Scholar 

  • Zoysa AKN, Loganathan P, Hedley MJ (1998) Effects of form of nitrogen supply of mobilisation of phosphorus from a phosphate rock and acidification in the rhizosphere of tea. Aust J Soil Res 36:373–387 doi:10.1071/S97079

    Article  CAS  Google Scholar 

  • Zoysa AKN, Loganathan P, Hedley MJ (1999) Phosphorus utilisation efficiency and depletion of phosphate fractions in the rhizosphere of three tea (Camellia sinensis L.) clones. Nutr Cycl Agroecosyst 53:189–201 doi:10.1023/A:1009706508627

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Basic Research and Development Program (2005CB120905), National 863 High Technology Program (2006AA10A112), and Specialized Research Fund for the Doctoral Program of Higher Education (20050504009), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangsen Xu.

Additional information

Responsible Editor: N. Jim Barrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Huang, Y., Ye, X. et al. Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant Soil 320, 91–102 (2009). https://doi.org/10.1007/s11104-008-9873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9873-0

Keywords

Navigation