Skip to main content
Log in

Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

High levels of selenium can cause adverse effects in plants as well as animals. In a greenhouse experiment, rapeseed (Brassica napus) was grown in an alkaline sandy loam soil treated with different levels of selenate-Se and selenite-Se ranging from 0 to 4 mg kg−1. Total dry matter yield of selenium-treated rapeseed plants decreased significantly as compared to control plants. Plants were stressed at a very early stage of vegetative growth and produced fewer rosettes and flowers. Plant height and leaf production were negatively affected by selenate-Se. Dry matter of leaves was significantly higher in selenite- than in selenate-treated plants. Selenate-treated plants accumulated 75–160 times more Se in shoots and 2–18 times more in roots as compared to selenite-treated plants at the rosette formation stage, with this difference narrowing at peak flowering stage. Rapeseed leaves were subjected to biochemical analysis at rosette and peak flowering stages. Accumulation of selenium in leaves resulted in a significant increase in lipid peroxidation, chlorophyll, vitamin C and free amino acids, and a decrease in phenols, total soluble sugars and starch concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DW:

Dry weight

LPO:

Lipid peroxidation

Se:

Selenium

TBARS:

Thiobarbituric acid reactive substances

References

  • Arvy MP (1989) Some factors influencing the uptake and distribution of selenite in the bean plant (Phaseolus vulgaris). Plant Soil 117:129–133

    Article  CAS  Google Scholar 

  • Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants. J Exp Bot 44:1083–1087

    Article  CAS  Google Scholar 

  • Asher CJ, Butler GW, Peterson PJ (1977) Selenium transport in root systems of tomato. J Exp Bot 28:279–291

    Article  CAS  Google Scholar 

  • Bañuelos GS, Meek DW (1989) Selenium accumulation in selected vegetables. J Plant Nutr 12:1255–1272

    Article  Google Scholar 

  • Bañuelos GS, Ajwa HA, Terry N, Zayed A (1997) Phytoremediation of selenium laden soils: a new technology. J Environ Qual 52(6):426–430

    Google Scholar 

  • Barrow NJ, Cartes P, Mora ML (2005) Modifications to the Freundlich equation to describe anion sorption over a large range and to describe competition between pairs of ions. Eur J Soil Sci 56:601–606

    Article  CAS  Google Scholar 

  • Bawa SS, Dhillon KS, Dhillon SK (1992) Screening of different fodders for selenium absorption capacity. Indian J Dairy Sci 45:457–460

    CAS  Google Scholar 

  • Birringer M, Pilawa S, Flohe L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  CAS  PubMed  Google Scholar 

  • Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium tolerant Astragalus species. Plant Physiol 67:1051–1053

    Article  CAS  PubMed  Google Scholar 

  • Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • Clegg KM (1956) The application of the anthrone reagent to the estimation of starch in cereals. J Sci Food Agric 7:40–44

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. Adv Agron 79:119–184

    Article  CAS  Google Scholar 

  • Dhillon KS, Randhawa NS, Sinha MK (1977) Selenium status of some common fodders and natural grasses of Punjab. Indian J Dairy Sci 30:218–224

    CAS  Google Scholar 

  • Dubois M, Gills KA, Hamilton JK, Rober PA (1956) Calorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Eisler R (1985) Selenium hazards to fish, wildlife and invertebrates: a synoptic review. Biological Report 85 (1.5), US Fish and Wildlife Service, Washington, DC

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  PubMed  Google Scholar 

  • Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in soils: a theoretical development. Soil Sci 144:141–152

    Article  CAS  Google Scholar 

  • Euliss KW (2004) The effects of selenium accumulation in hydroponically grown canola (Brassica napus). J Young Invest 1:1–12

    Google Scholar 

  • Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  CAS  Google Scholar 

  • Finley JW, Sigrid-Keck A, Robbins RJ, Hintze KJ (2005) Selenium enrichment of broccoli: interactions between selenium and secondary plant compounds. J Nutr 135:1236–1238

    CAS  PubMed  Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  PubMed  Google Scholar 

  • Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben Hayyim G (2002) A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. J Biol Chem 277:25983–25991

    Article  CAS  PubMed  Google Scholar 

  • Geering HR, Cary EE, Jones LHP, Allaway WH (1968) Solubility and redox criteria for the possible forms of selenium in soils. Soil Sci Soc Am J 32:35–40

    CAS  Google Scholar 

  • Gissel-Nielsen G, Bisbjerg B (1970) The uptake of applied selenium from soils by plants. 2. The utilization of various selenium compounds. Plant Soil 32:382–396

    Article  CAS  Google Scholar 

  • Gomes-Junior RA, Gratao PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Selenium-induced oxidative stress in coffee cell suspension cultures. Funct Plant Biol 34:449–456

    Article  CAS  Google Scholar 

  • Hamdy AA, Gissel-Nielsen G (1977) Fixation of selenium by clay mineral and iron oxides. Z Pflanzenernaehr Bodenkd 140:63–70

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak B, Szymanska M (2004) Selenium as a sulphydrylic group inductor in plants. Cell Mol Biol Lett 9:329–336

    CAS  PubMed  Google Scholar 

  • Heath RL, Parker L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Xu J, Pang G (2003) Effect of selenium on the yield and quality of green tea leaves harvested in early spring. J Agric Food Chem 51(11):3379–3381

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xu J, Hu Q (2005) Effect of selenium on preservative quality of green tea during autumn tea-processing season. J Agric Food Chem 53:7444–7447

    Article  CAS  PubMed  Google Scholar 

  • Kweon Y, Cheol S, Kum P, Young C, Ah J (2004) Effect of selenium source and concentrations on growth and quality of endive and pak-choi in deep flow culture. Korean J Hortic Sci Technol 22(2):151–155

    Google Scholar 

  • Läuchli A (1993) Selenium in plants: uptake, functions and environmental toxicity. Bot Acta 106:455–468

    Google Scholar 

  • Lee GP, Park K, Lee JM, Gross KC, Watada AE, Lee SK (1999) Quality improvement of Seoul celery by selenium in nutrient solution culture. Acta Hortic 483:185–192

    CAS  Google Scholar 

  • Lee YP, Takahashi T (1966) An improved colorimetric determination of amino acids with use of ninhydrin. Anal Biochem 14:71–77

    Article  CAS  Google Scholar 

  • Levesque M, Vandette ED (1971) Selenium determination in soil and plant materials. Can J Soil Sci 51:85–93

    Article  CAS  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN (2008) Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol 9:R62

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2005) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 270:179–188

    Article  CAS  Google Scholar 

  • Mazzafera P (1998) Growth and biochemical alterations in coffee due to selenite toxicity. Plant Soil 201:189–196

    Article  CAS  Google Scholar 

  • Minorsky PV (2003) The hot and the classic selenium in plants. Plant Physiol 133:14–15

    Article  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Novoselov S, Rao M, Onoshko N, Zhi H, Kryukov G, Xiang Y, Weeks D, Hatfield D, Gladyshev V (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21:3681–3693

    Article  CAS  PubMed  Google Scholar 

  • Nowak J, Kaklewski K, Ligocli M (2004) Influence of selenium on oxidoreductive enzymes activity in soil and in plants. Soil Biol Biochem 36:1553–1558

    Article  CAS  Google Scholar 

  • Pennanen A, Xue T, Hartikainen H (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J Appl Bot 76:66–76

    CAS  Google Scholar 

  • Peterson PJ, Butler GW (1962) The uptake and assimilation of selenite by higher plants. Aust J Biol Sci 15:126–146

    CAS  Google Scholar 

  • Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  CAS  PubMed  Google Scholar 

  • Prasad T, Arora SP (1980) Studies on 75Se accumulation in rice plants and its effect on yield. J Nuclear Agric Biol 9:77–78

    CAS  Google Scholar 

  • Rani N, Dhillon KS, Dhillon SK (2005) Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se. Plant Soil 277:367–374

    Article  CAS  Google Scholar 

  • Raspor P, Fujs S, Banszky L, Maraz A, Batic M (2003) The involvement of ATP sulfurylase in Se (VI) and Cr (VI) reduction processes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 63:89–95

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium. Geobotany, biochemistry, toxicity and nutrition. Academic, New York

    Google Scholar 

  • Saggoo MIS, Dhillon KS, Dhillon SK, Kaur J (2004) Evaluation of consumability potentials of leafy vegetables harvested from selenium rich soil. Environ Inf Arch 2:479–489

    Google Scholar 

  • Shang QM, Guo LH, Li SJ (1998) Effect of selenium on quality of hydroponics lettuce. J China Agric Univ 3:67–71

    Google Scholar 

  • Sharma S, Dhillon KS, Dhillon SK, Munshi SK (2008) Changes in biochemical components of wheat and rapeseed grown on selenium-contaminated soil. Arch Agron Soil Sci 54(1):33–40

    Article  CAS  Google Scholar 

  • Singh M, Singh N (1978) Selenium toxicity and its detoxication by phosphorus. Soil Sci 126:255–262

    CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  PubMed  Google Scholar 

  • Swain T, Hills WE (1959) The phenolic constituents of Prunus domestica: the quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, deSouza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  • Tripathi N, Misra SG (1974) Uptake of applied selenium by plants. Indian J Agr Sci 44:804–807

    CAS  Google Scholar 

  • Turakainen M, Hartikainen H, Seppänen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agric Food Chem 52:5378–5382

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007a) Extraordinarily high leaf selenium to sulfur ratios define Se accumulator plants. Ann Bot 100:111–118

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR, Bowen HC, Johnson SE (2007b) Selenium and its relationship with sulfur. In: Hawkesford MJ, de Kok LJ (eds) Sulfur in plants-an Ecological prospective. Springer, Dordrecht, pp 225–252

    Chapter  Google Scholar 

  • Willey N, Wilkins J (2006) An analysis of intertaxa differences in sulfur concentration in angiosperms. J Plant Nutr Soil Sci 169:717–727

    Article  CAS  Google Scholar 

  • Witham FH, Blaydes DF, Devlin RM (1971) Experiments in plant physiology. Van Nostrand, New York, p 245

    Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Yu XZ, Gu JD (2007) Metabolic responses of weeping willows to selenate and selenite. Environ Sci Pollut Res Int 14(7):510–517

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ackley AR, Pilon-Smits EAH (2007) Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions. J Plant Physiol 164:327–336

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pan G, Chen J, Hu Q (2003) Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant Soil 253:437–443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sucheta Sharma.

Additional information

Responsible Editor: Peter Christie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Bansal, A., Dhillon, S.K. et al. Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant Soil 329, 339–348 (2010). https://doi.org/10.1007/s11104-009-0162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0162-3

Keywords

Navigation