Skip to main content
Log in

European corn borer injury effects on lignin, carbon and nitrogen in corn tissues

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Plant herbivores often stimulate lignin deposition in injured plant tissue, but it is not known whether corn (Zea mays L.) reacts to European corn borer (ECB, Ostrinia nubilalis Hubner) injury in this manner. Bt (Bacillus thuringiensis) genetic modification is also reported to affect lignin in corn. This study evaluated the effects of ECB injury and the Bt gene on the chemical composition and decomposition of corn tissues. Eight near isolines (Bt and NBt) were grown in pots and half were infested with ECB. The experiment was repeated in 2 years. ECB injury increased the lignin concentration in corn leaves in one of 2 years and lowered the C:N ratio in injured stems. Lignin concentration in leaves was greater in Bt than NBt corn in 1 year and Bt stems had greater N concentration than NBt stems in 1 year of the 2 year study. ECB injury affected the composition of lignin-derived phenols, however ECB infested and non-infested stems lost the same amount of mass after 5 months in buried field litterbags. In conclusion ECB injury and the Bt gene had subtle effects on the chemical composition of corn tissue, which did not alter the short-term decomposition of corn residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baron C, Zambryski P (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Ann Rev Genet 29:107–129

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom GC, Nicholson RL (1999) The biology of corn anthracnose: knowledge to exploit for improved management. Plant Dis 83:596–608

    Article  CAS  Google Scholar 

  • Bode W, Calvin D, Mason CE (1990) Yield-loss relationships and economic injury levels for European corn borer (Lepidoptera: Pyralidae) populations infesting Pennsylvania field corn. J Econ Entomol 83:1595–1603

    Google Scholar 

  • Cadisch G, Giller K (1997) Driven by nature: plant litter quality and decomposition. CAB International, UK

    Google Scholar 

  • Campbell M, Sederoff R (1996) Variation in lignin content and composition. Plant Physiol 110:3–13

    CAS  PubMed  Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729

    Article  CAS  PubMed  Google Scholar 

  • Cheong Y, Chang H, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  CAS  PubMed  Google Scholar 

  • Clark T, Foster J, Kamble S, Heinrichs E (2000) Comparison of Bt (Bacillus thuringiensis Berliner) maize and conventional measures for control of the European corn borer (Lepidoptera: Crambidae). J Entomol Sci 35:118–128

    Google Scholar 

  • Delessert C, Wilson I, Van Der Straeten D, Dennis E, Dolferus R (2004) Spatial and temporal analysis of the local response to wounding. Plant Mol Biol 55:165–181

    Article  CAS  PubMed  Google Scholar 

  • Dillehay B, Roth G, Calvin D, Kratochvil R, Kuldau G, Hyde J (2004) Performance of Bt corn hybrids, their near isolines, and leading corn hybrids in Pennsylvania and Maryland. Agron J 96:818–824

    Article  Google Scholar 

  • Dinel HH, Schnitzer MM, Saharinen MM, Meloche FF, Paré T, Dumontet S, Lemee LL, Ambles AA (2003) Extractable soil lipids and microbial activity as affected by Bt and non Bt maize grown on a silty clay loam soil. J Environ Sci Health, Part B 38:211–219

    Article  Google Scholar 

  • Dixon R, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends in Plant Sci 1:171–178

    Article  Google Scholar 

  • Ecker J, Davis R (1987) Plant defense genes are regulated by ethylene. Proc Natl Acad Sci USA 84:5202–5206

    Article  CAS  PubMed  Google Scholar 

  • Escher N, Käch B, Nentwig W (2000) Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcellio scaber (Crustacea: Isopoda). Basic Appl Ecol 1:161–169

    Article  Google Scholar 

  • Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol Biochem 37:1073–1082

    Article  CAS  Google Scholar 

  • Fogel R, Cromack K Jr (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can J Bot 55:1632–1640

    Article  Google Scholar 

  • Goering H, Van Soest P (1970) Forage fiber analyses (apparatus, reagents, procedures, and some applications). US Agricultural Research Service, Washington

    Google Scholar 

  • Goñi M, Montgomery S (2000) Alkaline CuO oxidation with a microwave digestion system: Lignin analyses of geochemical samples. Anal Chem 72:3116–3121

    Article  PubMed  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Ann Rev Plant Biol 40:347–369

    Article  CAS  Google Scholar 

  • Hammel KE (1997) Fungal Degradation of Lignin. In: Cadisch G, Giller KE (eds) Driven by Nature: Plant Litter Quality and Decomposition. CAB International, UK, pp 33–45

    Google Scholar 

  • Hawkins S, Boudet A (1996) Wound-induced lignin and suberin deposition in a woody angiosperm (Eucalyptus gunnii Hook.): histochemistry of early changes in young plants. Protoplasma 191:96–104

    Article  Google Scholar 

  • Hedges J, Blanchette R, Weliky K, Devol A (1988) Effects of fungal degradation on the CuO oxidation products of lignin: a controlled laboratory study. Geochim Cosmochim Acta 52:2717–2726

    Article  CAS  Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178

    Article  CAS  Google Scholar 

  • Hopkins D, Webster E, Chudek J, Halpin C (2001) Decomposition in soil of tobacco plants with genetic modifications to lignin biosynthesis. Soil Biol Biochem 33:1455–1462

    Article  CAS  Google Scholar 

  • Howe G, Schaller A (2008) Direct defenses in plants and their induction by wounding and insect herbivores. In: Schaller A (ed) Induced Plant Resistance to Herbivory. Springer, Netherlands, pp 7–29

    Chapter  Google Scholar 

  • Hyde J, Martin MA, Preckel PV, Edwards CR (1999) The economics of Bt corn: valuing protection from the European Corn Borer. Appl Econ Perspect Policy 21:442–454

    Google Scholar 

  • Janzen HH (2005) Soil carbon: a measure of ecosystem response in a changing world? Can J Soil Sci 85:467–480

    CAS  Google Scholar 

  • Jeffries T (1994) Biodegradation of lignin and hemicelluloses. In: Ratledge C (ed) Biochemistry of Microbial Degradation. Kluwer Academic Pub, Dordrecht, Netherlands, pp 233–277

    Google Scholar 

  • Jenny H, Gessel S, Bingham F (2006) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 171:S116–S129

    Article  CAS  Google Scholar 

  • Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71:155–162

    Article  CAS  Google Scholar 

  • Jung HG, Sheaffer CC (2004) Influence of Bt transgenes on cell wall lignification and digestibility of maize stover for silage. Crop Sci 44:1781–1789

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin I (2002) Plant Response to Insect Herbivory: The Emerging Molecular Analysis. Ann Rev Plant Biol 53:299–328

    Article  CAS  Google Scholar 

  • Lagrimini L (1991) Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol 96:577–583

    Article  CAS  PubMed  Google Scholar 

  • Lehman RM, Osborne SL, Prischmann-Voldseth DA, Rosentrater KA (2010) Insect-damaged corn stalks decompose at rates similar to Bt-protected, non-damaged corn stalks. Plant Soil doi:10.1007/s11104-11010-10364-11108

    Google Scholar 

  • Lehman RM, Osborne SL, Rosentrater KA (2008) No differences in decomposition rates observed between Bacillus thuringiensis and non-Bacillus thuringiensis corn residue incubated in the field. Agron J 100:163–168

    Article  Google Scholar 

  • Loh P, Miller A, Reeves A, Harvey S, Overnell J (2008) Optimised recovery of lignin-derived phenols in a Scottish fjord by the CuO oxidation method. J Environ Monit 10:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Lyons PC, Hipskind J, Vincent JR, Nicholson RL (1993) Phenylpropanoid dissemination in maize resistant or susceptible to Helminthosporium maydis. Maydica 38:175–181

    Google Scholar 

  • Martin S, Darrah L, Hibbard B (2004) Divergent selection for rind penetrometer resistance and its effects on European corn borer damage and stalk traits in corn. Crop Sci 44:711–717

    Article  Google Scholar 

  • Mason C, Rice M, Calvin D, Van Duyn J, Showers W, Hutchison W, Witkowski J, Higgins R, Onstad D, Dively G (1996) European corn borer: ecology and management. North Central Regional Extension Publication No. 327, Iowa State University, Ames, IA.

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Nicholson R, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Ann Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Nykanen H, Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104:247–268

    Article  Google Scholar 

  • Obrist L, Dutton A, Albajes R, Bigler F (2006) Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecol Entomol 31:143–154

    Article  Google Scholar 

  • Olson J (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Ostrander B, Coors J (1997) Relationship between plant composition and European corn borer resistance in three maize populations. Crop Sci 37:1741–1745

    Article  Google Scholar 

  • Otto A, Simpson M (2006) Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochem 80:121–142

    Article  CAS  Google Scholar 

  • Pascholati S, Nicholson R, Butler L (2008) Phenylalanine ammonia-lyase activity and anthocyanin accumulation in wounded maize mesocotyls. J Phytopathol 115:165–172

    Article  Google Scholar 

  • Poerschmann J, Gathmann A, Augustin J, Langer U, Górecki T (2005) Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize-Characterization of lignin patterns. J Environ Qual 34:1508–1518

    Article  CAS  PubMed  Google Scholar 

  • Poerschmann J, Rauschen S, Langer U, Augustin J, Gorecki T (2008) Molecular level lignin patterns of genetically modified Bt-maize MON88017 and three conventional varieties using tetramethylammonium hydroxide (TMAH)-induced thermochemolysis. J Agric Food Chem 56:11906–11913

    Article  CAS  PubMed  Google Scholar 

  • Rasse D, Dignac M, Bahri H, Rumpel C, Mariotti A, Chenu C (2006) Lignin turnover in an agricultural field: from plant residues to soil-protected fractions. Eur J Soil Sci 57:530–538

    Article  CAS  Google Scholar 

  • Reay D, Pidwirny M (Lead Authors), Gulledge J, Draggan S (Topic Editor) (2010) Carbon Dioxide. In: Cleveland CJ (ed) Encyclopedia of Earth. Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment. http://www.eoearth.org/article/Carbon_dioxide. First published in the Encyclopedia of Earth September 27, 2006; Last revised January 3, 2010, Accessed 04 June 2010.

  • SAS Institute Inc. (2009) SAS Campus Drive, Cary, North Carolina 27513, USA.

  • Saxena D, Stotzky G (2001) Bt corn has a higher lignin content than non-Bt corn. Am J Bot 88:1704–1706

    Article  CAS  Google Scholar 

  • Stange R Jr, Ralph J, Peng J, Sims J, Midland S, McDonald R (2001) Acidolysis and hot water extraction provide new insights into the composition of the induced “lignin-like” material from squash fruit. Phytochem 57:1005–1011

    Article  CAS  Google Scholar 

  • Tarkalson DD, Kachman SD, Knops JMN, Thies JE, Wortmann CS (2008) Decomposition of Bt and non-Bt corn hybrid residues in the field. Nutr Cycl Agroecosys 80:211–222

    Article  CAS  Google Scholar 

  • Tiwari S, Youngman RR, Laub CA, Brewster CC, Jordan TA, Teutsch C (2009) European corn borer (Lepidoptera: Crambidae) infestation level and plant growth stage on whole plant corn yield grown for silage in Virginia. J Econ Entomol 102:2146–2153

    Article  CAS  PubMed  Google Scholar 

  • Trofymow JA, CIDET Working Group (1998) The Canadian Intersite Decomposition Experiment (CIDET): Project and site establishment report. Inf. Rep BC-X-378. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria.126 pp.

  • US-EPA (2001) Bt Plant-Pesticides Biopesticides Registration Action Document: preliminary risks and benefits sections—Bacillus thuringiensis plant-pesticides. US EPA Office of Pesticide Programs, Biopesticides and Pollution Prevention Division http://www.epa.gov/oscpmont/sap/meetings/2000/october/brad3_enviroassessment.pdf, Accessed 25 April 2010.

  • Vance C, Kirk T, Sherwood R (1980) Lignification as a mechanism of disease resistance. Ann Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Vanlauwe B, Diels J, Sanginga N, Merckx R (1997) Residue quality and decomposition: an unsteady relationship? In: Cadisch G, Giller K (eds) Driven by Nature: Plant Litter Quality and Decomposition. CAB International, UK, pp 157–166

    Google Scholar 

  • Walter W Jr, Randall-Schadel B, Schadel W (1990) Wound healing in cucumber fruit. J Am Soc Hortic Sci 115:444–452

    Google Scholar 

  • Wider R, Lang G (1982) A critique of the analytical methods used in examining decomposition data obtained from litterbags. Ecology 63:1636–1642

    Article  Google Scholar 

  • Zhang S, Yang Q, Ma R (2007) Erwinia carotovora ssp. carotovora infection induced “defense lignin” accumulation and lignin biosynthetic gene expression in Chinese cabbage (Brassica rapa L. ssp. pekinensis). J Integr Plant Biol 49:993–1002

    Article  CAS  Google Scholar 

  • Zwahlen C, Hilbeck A, Nentwig W (2007) Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates. Plant Soil 300:245–257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. François Meloche, entomologist at Agriculture and Agri-Food Canada, Ottawa, Canada for advice on handling European corn borer. Corn seeds were donated by Maizex and Syngenta. Financial support for this work was from the Green Crop Network, funded by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joann K. Whalen.

Additional information

Responsible Editor: Juha Mikola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanni, S.F., Whalen, J.K., Ma, BL. et al. European corn borer injury effects on lignin, carbon and nitrogen in corn tissues. Plant Soil 341, 165–177 (2011). https://doi.org/10.1007/s11104-010-0632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0632-7

Keywords

Navigation