Skip to main content
Log in

Do soil enzymes respond to long-term grazing in an arid ecosystem?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Our objective was to assess the effects of long-term continuous grazing on soil enzyme activities in relation to shifts in plant litter attributes and soil resources in an arid ecosystem, considering both spatial and temporal variations.

Methods

We randomly extracted soil samples with the respective litter cover at 5 modal size plant-covered patches (PCP) and the nearest inter-canopy areas (IC) at Patagonian Monte sites with low, medium and high grazing intensity in winter and summer from 2007 to 2009. We analyzed enzyme activities (dehydrogenase, ß-glucosidase, protease, alkaline and acid phosphatase), microbial biomass-C, organic-C, total soil-N, and moisture in soil and mass and quality in plant litter. We assessed faeces density and plant cover in the field.

Results and conclusions

Grazing led to reduced grass cover, decreasing plant litter mass with increasing soluble phenolics, and reduced phosphatases, ß-glucosidase and microbial biomass-C at PCP. A localized nutrient input from animal excreta seems to promote microbial biomass-C, alkaline phosphatase and dehydrogenase activities but only at IC from the site with high grazing intensity. Plant heterogeneous distribution, plant litter quantity and quality, nutrient inputs from grazers and seasonal variation in soil moisture, also affecting soil resources and microbial biomass, modulate soil enzyme responses to long-term grazing in the arid Patagonian Monte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCP:

Modal size plant-covered patches

IC:

Inter-canopy areas

L:

Low grazing intensity

M:

Medium grazing intensity

H:

High grazing intensity

References

  • Acosta-Martínez V, Bell CW, Morris BEL, Zak J, Allend VG (2010) Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region. Agric Ecosyst Environ 137:231–240

    Article  CAS  Google Scholar 

  • Alef K, Kleiner D (1986) Arginine ammonification in soil samples. In: The application of enzymatic and microbiological methods in soil analysis. Veroff Landwirtsch-Chem, Bundesanstalt Linz/Donau, pp 163–168

  • Alkorta I, Aizpurua A, Riga P, Albizu I, Amezaga I, Garbisu C (2003) Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18:65–73

    PubMed  Google Scholar 

  • Amani SM, Isla MI, Vattuone MA, Poch MP, Cudmani NG, Sampietro AR (1998) Antimicrobial activities in some Argentine medicinal plants. Acta Horticult 501:115–122

    Google Scholar 

  • Anesini C, Perez C (1993) Screening of plant used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 39:119–128

    Article  PubMed  CAS  Google Scholar 

  • Bastida F, Moreno JL, Hernández T, García C (2006) Microbiological degradation index of soils in a semiarid climate. Soil Biol Biochem 38:3463–3473

    Article  CAS  Google Scholar 

  • Bertiller MB, Ares JO (2008) Sheep spatial grazing strategies at the arid Patagonian Monte, Argentina. Rangel Ecol Manag 6:38–47

    Article  Google Scholar 

  • Bertiller MB, Ares JO, Bisigato AJ (2002) Multi-scale indicators of land degradation in the Patagonian Monte, Argentina. Environ Manag 30:704–715

    Article  Google Scholar 

  • Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653

    Article  Google Scholar 

  • Bisigato AJ, Lopez Laphitz RM, Carrera AL (2008) Non-linear relationships between grazing pressure and conservation of soil resources in Patagonian Monte shrublands. J Arid Environ 72:1464–1475

    Article  Google Scholar 

  • Blank RR (2004) Enzyme activity in temperate desert soils: influence of microsite, depth, and grazing. In: Seed and soil dynamics in Shrubland ecosystems: Proceedings. USDA Forest Service, Proceedings RMRS-P-31, pp 51–53

  • Bremner JM, Mulvaney CS (1982) Nitrogen total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637–644

    Article  CAS  Google Scholar 

  • Campanella MV, Bisigato AJ (2010) What causes changes in plant litter quality and quantity as consequence of grazing in the Patagonian Monte: plant cover reduction or changes in species composition? Aust Ecol 35:787–793

    Article  Google Scholar 

  • Carrera A (2003) Patrones de conservación de nitrógeno en ecosistemas áridos del NE de la Patagonia. PhD Thesis. Centro Regional Universitario Bariloche-Universidad Nacional del Comahue. 178 pp

  • Carrera AL, Bertiller MB (2013) Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands. J Environ Manag 114:505–511

    Article  CAS  Google Scholar 

  • Carrera A, Bertiller M, Larreguy C (2008) Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant Soil 311:39–50

    Article  CAS  Google Scholar 

  • Coombs J, Hind G, Leegood RC, Tienszen LL, Vonshsk A (1985) Analytical techniques. In: Coombs J, Hall DO, Long SP, Scurlock JMO (eds) Techniques in bioproductivity and photosynthesis. Pergamon Press, New York, pp 219–228

    Google Scholar 

  • Coronato FR, Bertiller MB (1997) Climatic controls of soil moisture dynamics in an arid steppe of northern Patagonia, Argentina. Arid Soil Res Rehabil 11:277–288

    Article  Google Scholar 

  • del Valle HF (1998) Patagonian soils: a regional synthesis. Ecol Aust 8:103–123

    Google Scholar 

  • Dick RO, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality, special publication. Soil Science Society of America, Madison, pp 247–271

    Google Scholar 

  • Fterich A, Mahdhi M, Mars M (2012) Impact of grazing on soil microbial communities along a chronosequence of Acacia tortilis subsp. raddiana in arid soils in Tunisia. Eur J Soil Biol 50:56–63

    Article  Google Scholar 

  • Gil JM, Sánchez A, Marín P, Delgado MJ, Ortiz R (2010) Variación estacional de la respiración basal y la actividad deshidrogenasa en suelos de un transecto de la Sierra de las Moreras (Mazarrón, Murcia). Span J Rural Dev 1:65–74

    Article  Google Scholar 

  • Golluscio RA, Austin AT, García Martínez GC, Gonzalez-Polo M, Sala OE, Jackson RB (2009) Sheep grazing decreases organic carbon and nitrogen pools in the Patagonian steppe: combination of direct and indirect effects. Ecosystems 12:686–697

    Article  CAS  Google Scholar 

  • Harrison AF (1983) Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils. Soil Biol Biochem 15:93–99

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Haynes RJ, Williams PH (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron 49:119–199

    Article  CAS  Google Scholar 

  • Hernández DL, Hobbie SE (2010) The effects of substrate composition, quantity, and diversity on microbial activity. Plant Soil 335:397–411

    Article  CAS  Google Scholar 

  • Hiradate S, Ma JF, Matsumoto H (2007) Strategies of plants to adapt to mineral stresses in problem soils (Review). Adv Agron 96:65–132

    Article  CAS  Google Scholar 

  • Holt JA (1997) Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Appl Soil Ecol 5:143–149

    Article  Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

  • León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de la vegetación de la Patagonia extra andina. Ecol Aust 8:125–144

    Google Scholar 

  • Li X, Sarah P (2003) Enzyme activities along a climatic transect in the Judean Desert. Catena 53:349–363

    Article  CAS  Google Scholar 

  • Malkomes HP (1993) Eine modifizierte methode zur erfassung der dehydrogenaseaktivität (TTC-reduktion) im bodem nach herbizidanwendung. A modified method to examine the dehydrogenase activity (TTC reduction) in soil after herbicide treatments. Nachr Dtsch Pflanzenschutzd 45:180–185

    Google Scholar 

  • Mazzarino MJ, Bertiller MB, Sain CL, Laos F, Coronato FR (1996) Spatial patterns of nitrogen availability, mineralization, and immobilization in northern Patagonia, Argentina. Arid Soil Res Rehabil 10:295–309

    Article  CAS  Google Scholar 

  • Moleele NM, Perkins JS (1998) Encroaching woody plant species and boreholes: is cattle density the main driving factor in the Olifants Drift communal grazing lands, South-eastern Botswana? J Arid Environ 40:245–267

    Article  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic mater. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties. American Society of Agronomy, Madison, pp 539–579

    Google Scholar 

  • Noe L, Abril A (2008) Interacción entre calidad de restos vegetales, descomposición y fertilidad del suelo en el desierto del Monte de Argentina. Ecol Austral 18:181–193

    Google Scholar 

  • Norusis MJ (1997) SPSS advanced statistics 7.5. SPSS Inc, Chicago

    Google Scholar 

  • Paudel BR, Udawatta RP, Kremer RJ, Anderson SH (2012) Soil quality indicator responses to row crop, grazed pasture, and agroforestry buffer management. Agrofor Syst 84:311–323

    Article  Google Scholar 

  • Prieto LH, Bertiller MB, Carrera AL, Olivera NL (2011) Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina. Geoderma 162:281–287

    Article  CAS  Google Scholar 

  • Quiroga EN, Sampietro AR, Vattuone MA (2001) Screening antifungal activities of selected medicinal plants. J Ethnopharmacol 74:89–96

    Article  PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  PubMed  CAS  Google Scholar 

  • Raiesi F, Asadi E (2006) Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biol Fertil Soils 43:76–82

    Article  Google Scholar 

  • Reyes-Reyes BG, Zamora-Villafranco E, Reyes-Reyes ML, Frias-Hernandez JT, Olalde-Portugal V, Dendooven L (2003) Decomposition of leaves of huisache (Acacia tortuoso) and mesquite (Prosopis spp.) in soil of the central highlands of Mexico. Plant Soil 256:359–370

    Article  CAS  Google Scholar 

  • Schaller K (2009) Soil enzymes—valuable indicators of soil fertility and environmental impacts. Bull UASVM Hortic 66:1843–5394

    Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Schlesinger WH, Hasey MM (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62:762–774

    Article  CAS  Google Scholar 

  • Schulze ED, Mooney HA, Sala OE, Jobbagy E, Buchmann N, Bauer G, Canadell J, Jackson RB, Loreti J, Oesterheld M, Ehleringer JR (1996) Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108:503–511

    Article  Google Scholar 

  • Schuman GE, Reeder JD, Manley JT, Hart RH, Manley WA (1999) Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol Appl 9:65–71

    Article  Google Scholar 

  • Shahriary E, Palmer MW, Tongway DJ, Azarnivand H, Jafari M, Mohseni Saravi M (2012) Plant species composition and soil characteristics around Iranian piospheres. J Arid Environ 82:106–114

    Article  Google Scholar 

  • Shand CA, Williams BL, Smith S, Young ME (2000) Temporal changes in C, P and N concentrations in soil solution following application of synthetic sheep urine to a soil under grass. Plant Soil 222:1–13

    Article  CAS  Google Scholar 

  • Shrestha G, Stahl PD (2008) Carbon accumulation and storage in semi-arid sagebrush steppe: effects of long-term grazing exclusion. Agric Ecosyst Environ 125:173–181

    Article  CAS  Google Scholar 

  • Smet M, Ward D (2006) Soil quality gradients around water-points under different management systems in a semi-arid savanna, South Africa. J Arid Environ 64:251–269

    Article  Google Scholar 

  • Speir TW, Cowling JC (1991) Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices. Biol Fertil Soils 12:189–194

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai MA, Wollum A (eds) Methods of soil analysis, part 2, microbiological and biochemical properties. SSSA Book Series 5, Madison, pp 775–833

  • Tian L, Dell E, Shi W (2010) Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization. Appl Soil Ecol 46:426–435

    Article  Google Scholar 

  • van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 46:829–835

    Google Scholar 

  • Vargas DN, Bertiller MB, Ares JO, Carrera AL, Sain CL (2006) Soil C and N dynamics by leaf-litter decomposition of shrubs and perennial grasses of the Patagonian Monte. Soil Biol Biochem 38:2401–2410

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Hayano K (1996) Seasonal variation in extracted proteases and relationship to overall soil protease and exchangeable ammonia in paddy soils. Biol Fertil Soils 21:89–94

    Article  CAS  Google Scholar 

  • Waterman PG, Mole S (1994) Extraction and chemical quantification. In: Waterman PG, Mole S (eds) Methods in ecology, analysis of phenolic plant metabolites. Blackwell, Cambridge, pp 66–103

    Google Scholar 

  • Whitford W (2002) Decomposition and nutrient cycling. In: Whitford W (ed) Ecology of desert systems. Academic Press, San Diego, pp 235–274

    Chapter  Google Scholar 

  • Wick B, Kühne RF, Vielhauer K, Vlek PLG (2002) Temporal variability of selected soil microbiological indicators under different soil quality conditions in south-western Nigeria. Biol Fertil Soils 35:155–167

    Article  CAS  Google Scholar 

  • Yao HY, Bowman D, Rufty T, Shi W (2009) Interactions between N fertilization, grass clipping addition and pH in turf ecosystems: implications for soil enzyme activities and organic matter decomposition. Soil Biol Biochem 41:1425–1432

    Article  CAS  Google Scholar 

  • Yong-Zhong S, Yu-Lin L, Jian-Yuan C, Wen-Zhi Z (2005) Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena 59:267–278

    Article  Google Scholar 

  • Zampini IC, Cudmani N, Isla MI (2007) Actividad antimicrobiana de plantas medicinales argentinas sobre bacterias antibiótico-resistentes. Acta Bio Clín Latinoam 41:385–393

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Mr. Fermín Sarasa who allowed access to the study area in Estancia San Luis, and Dr. Marta Susana Dardanelli and two anonymous reviewers for their valuable comments to improve this manuscript. This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (PICT 08-11131, 08-20454, and 02-02192- PICT 1349) and the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP- 112-200801-01664) of Argentina. L. H. Prieto was a fellowship holder of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelda L. Olivera.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PPT 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivera, N.L., Prieto, L., Carrera, A.L. et al. Do soil enzymes respond to long-term grazing in an arid ecosystem?. Plant Soil 378, 35–48 (2014). https://doi.org/10.1007/s11104-013-2010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-2010-8

Keywords

Navigation