Skip to main content

Advertisement

Log in

Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Herbaspirillum spp. has been described as bacteria that colonizes not only maize roots but also stems and leaves. This study aimed to access the growth-promoting effect of 21 strains of Herbaspirillum on maize plants. This study is composed by 12 strains of the H. seropedicae, 5 strains of the H. rubrisubalbicans and 4 strains of the H. frisingense.

Methods

Bacterial selection was performed in two phases, consisting on planting the BRS4157 maize variety and hybrid SHS5050 in the greenhouse, with sterile and non-sterile substrate and in the field. After 40 days, the greenhouse plants were harvested and the dry matter accumulation of the aerial part and roots were measured. The best-performing strain was tested in field trials treated with 40 and 80 kg ha−1 of N fertilizer, parallel to the same treatments without inoculation. In this trial, the grain yield was evaluated as well as the contribution of biological nitrogen fixation (BNF), using the technique of natural abundance of 15 N.

Results

The results showed that H. seropedicae ZAE94 was the best strain under controlled conditions and its application as a field inoculant increased maize yield up to 34 %, depending on the plant genotype. The BNF quantification revealed that 37 % BNF-derived plant nitrogen in the hybrid SHS5050 inoculated with the H. seropedicae strain ZAE94.

Conclusions

The difference in response to nitrogen as well as to inoculation depends on the selected plant genotype and the bacterial inoculant. H. seropedicae ZAE94 can promote plant growth and contribute biologically with fixed nitrogen in the maize hybrid SHS5050.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi:10.1007/s00248-009-9531-y

    Article  CAS  PubMed  Google Scholar 

  • Amaral Filho JPR, Fornasieri Filho D, Farinelli R, Barbosa JC (2005) Espaçamento, densidade populacional e adubação nitrogenada na cultura do milho. Rev Bras Cienc Solo 29:467–473

    Article  Google Scholar 

  • Araujo FF, Foloni JSS, Wutzke M, da Silva MA, Rack E (2013) Híbridos e variedades de milho submetidos à inoculação de sementes com Herbaspirillum seropedicae. Semina: Ciências Agrárias 34:1043–1054

    Google Scholar 

  • Araújo LAN, Ferreira ME, da Cruz MCP (2004) Adubação nitrogenada na cultura do milho. Pesq Agrop Brasileira 39:771–777

    Article  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen-nov., sp.-nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93

    Article  CAS  Google Scholar 

  • Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VLD, Olivares FL, Hoste B, Kersters K, Hartmann A, Gillis M, Dobereiner J (1996) Emended description of Herbaspirillum; Inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int J Syst Bacteriol 46:802–810

    Article  CAS  PubMed  Google Scholar 

  • Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil doi:10.1007/s11104-2186-6

  • Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Boddey RM (1987) Methods for quantification of nitrogen-fixation associated with Gramineae. Crit Rev Plant Sci 6:209–266. doi:10.1080/07352688709382251

    Article  CAS  Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJ, Urquiaga S (2001) Use of the 15 N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust J Plant Physiol 28:889–895

    Google Scholar 

  • Bouffaud ML, Kyselkova M, Gouesnard B, Grundmann G, Muller D, Moenne-Loccoz Y (2012) Is diversification history of maize influencing selection of soil bacteria by roots? Mol Ecol 21:195–206. doi:10.1111/j.1365-294X.2011.05359.x

    Article  PubMed  Google Scholar 

  • Bremner J, Mulvaney C (1982) Nitrogen-total. Methods of soil analysis Part 2 Chemical and microbiological properties. Meth Soil Anal 2:595–624

    Google Scholar 

  • Bull LT, Cantarella H (1993) Cultura do milho: fatores que afetam a produtividade. Associação Brasileira para Pesquisa da Potassa e do Fosfato, Brazil

    Google Scholar 

  • Combes-Meynet E, Pothier JF, Moenne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2, 4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe Interact 24:271–284. doi:10.1094/Mpmi-07-10-0148

    Article  CAS  PubMed  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Bena G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189. doi:10.1016/j.plantsci.2008.01.020

    Article  CAS  Google Scholar 

  • Dilworth MJ (1966) Acetylene reduction fixing preparations of Clostridium pasteurianum. Biochim Biophys Acta 127(2):285–294

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  • Estrada GA, Baldani VLD, de Oliveira DM, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369:115–129. doi:10.1007/s11104-012-1550-7

    Article  CAS  Google Scholar 

  • Euclydes R (2004) Sistema para análises estatísticas (SAEG 9.0). Viçosa: Funarbe

  • Ferreira D (2010) Sisvar: versão 5.3. Lavras: UFLA

  • Galli F (1978) Manual de Fitopatologia. Vol. II–Doenças das Plantas Cultivadas

  • Garcia de Salamone IE, Funes JM, Di Salvo LP, Escobar-Ortega JS, D'Auria F, Ferrando L, Fernandez-Scavino A (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:196–204. doi:10.1016/j.apsoi1.2011.12.012

    Article  Google Scholar 

  • Guimarães SL, Baldani J, Baldani VLD (2003) Efeito da inoculação de bactérias diazotróficas endofíticas em arroz de sequeiro. Rev Agronomia 37:25–30

    Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145. doi:10.1046/j.1469-8137.2002.00371.x

    Article  CAS  Google Scholar 

  • Hale CN, Wilke JP (1972) A comparative study of Pseudomonas species pathogenic to sorghum. N Z J Agric Res 15:448–456

    Article  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425. doi:10.1007/s11104-009-0262-0

    Article  CAS  Google Scholar 

  • Islam MR, Madhaiyan M, Boruah HPD, Yim W, Lee G, Saravanan VS, Fu QL, Hu HQ, Sa T (2009) Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. J Microbiol Biotechnol 19:1213–1222. doi:10.4014/jmb.0903.03028

    Article  CAS  PubMed  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio QL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906. doi:10.1094/Mpmi.2002.15.9.894

    Article  CAS  PubMed  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119. doi:10.1080/07352689891304195

    Article  Google Scholar 

  • James EK, Olivares FL, Baldani JI, Dobereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L Moench. J Exp Bot 48:785–797. doi:10.1093/Jxb/48.3.785

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120. doi:10.1007/Bf01731581

    Article  CAS  PubMed  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168

    CAS  PubMed  Google Scholar 

  • Lagier J-C, Gimenez G, Robert C, Raoult D, Fournier P-E (2012) Non-contiguous finished genome sequence and description of Herbaspirillum massiliense sp. nov. Stand. Genomic Sci 7:200–209

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Machado AT, Sodek L, Fernandes MS (2001) N-partitioning, nitrate reductase and glutamine synthetase activities in two contrasting varieties of maize. Pesq Agrop Brasileira 36:249–256. doi:10.1590/S0100-204X2001000200006

    Article  Google Scholar 

  • Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196. doi:10.1007/s11104-012-1125-7

    Article  CAS  Google Scholar 

  • Monteiro RA, Schmidt MA, de Baura VA, Balsanelli E, Wassem R, Yates MG, Randi MAF, Pedrosa FO, de Souza EM (2008) Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 31:932–937. doi:10.1590/S1415-47572008005000007

    Article  Google Scholar 

  • Olivares FL, James E (2000) Endophytic establishment of diazotrophic bacteria in sugar cane plants. In: Nitrogen Fixation: From Molecules to Crop Productivity. Springer, New York, USA, pp 413–414

    Google Scholar 

  • Oliveira AD, Urquiaga S, Döbereiner J, Baldani J (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Oliveira ALM, Canuto ED, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32. doi:10.1007/s11104-006-0025-0

    Article  CAS  Google Scholar 

  • Oliveira ALM, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113. doi:10.1016/j.ejsobi.2008.09.004

    Article  CAS  Google Scholar 

  • Perin L, Martinez-Aguilar L, Castro-Gonzalez R, Estrada-de Los Santos P, Cabellos-Avelar T, Guedes HV, Reis VM, Caballero-Mellado J (2006) Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110. doi:10.1128/Aem.72.5.3103-3110.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poulin R, Keeney DB (2008) Host specificity under molecular and experimental scrutiny. Trends Parasitol 24:24–28. doi:10.1016/J.Pt.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  • Radwan T, Mohamed ZK, Reis VM (2004) Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de milho e arroz. Pesq Agrop Brasileira 39:987–994

    Article  Google Scholar 

  • Radwan TEE, Mohamed ZK, Reis VM (2005) Aeration and salt effects on indol acetic production by diazotrophic bacteria. Pesq Agrop Brasileira 40:997–1004

    Article  Google Scholar 

  • Reddy P, James E, Ladha J, Leigh G (2002) Nitrogen fixation in rice. Nitrogen fixation at the millennium pp.421–445

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, Teixeira KRD, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N-2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261. doi:10.1007/s11104-007-9476-1

    Article  CAS  Google Scholar 

  • Rodrigues Neto J, Malavolta V Jr, Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 12(1–2):32

    Google Scholar 

  • Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47. doi:10.1016/S0168-6496(03)00108-9

    Article  CAS  PubMed  Google Scholar 

  • Rosconi F, Davyt D, Martinez V, Martinez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927. doi:10.1111/1462-2920.12075

    Article  CAS  PubMed  Google Scholar 

  • Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, Pollmann S, Hartmann A (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95. doi:10.1111/j.1574-6941.2008.00582.x

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schloter M, Bode W, Hartmann A, Beese F (1992) Sensitive chemoluminescence-based immunological quantification of bacteria in soil extracts with monoclonal-antibodies. Soil Biol Biochem 24:399–403. doi:10.1016/0038-0717(92)90201-8

    Article  Google Scholar 

  • Scott A, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance. Biometrics 30:507–512

    Article  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-Fixation in field settings - Estimations based on natural 15 N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Song SD, Hartmann A, Burris RH (1985) Purification and properties of the nitrogenase of Azospirillum amazonense. J Bacteriol 164:1271–1277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Straub D, Yang HY, Liu Y, Tsap T, Ludewig U (2013) Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30 (T). J Exp Bot 64:4603–4615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W - Improving the sensitivity of progressive multiple Sequence Alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Videira SS, de Araujo JLS, Rodrigues LD, Baldani VLD, Baldani JI (2009) Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293:11–19. doi:10.1111/j.1574-6968.2008.01475.x

    Article  CAS  PubMed  Google Scholar 

  • Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moenne-Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163. doi:10.1007/s11104-011-0960-2

    Article  CAS  Google Scholar 

  • Yamada T (1996) Adubação nitrogenada do milho: quanto, como e quando aplicar. Informações Agronômicas, Piracicaba: POTAFOS 74:1–5

    Google Scholar 

Download references

Acknowledgments

This project was funded by Embrapa n. 02.05.1.06.00.01 and 02.09.01.11.00.06 and INCT/CNPq Proc. no. 573828/2008-3. The authors wish to thank Universidade Federal Rural do Rio de Janeiro, the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for a postdoctoral scholarship of the first author and National Council for Scientific and Technological Development (CNPq) for the research grants of the last author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Massena Reis.

Additional information

Responsible Editor: Katharina Pawlowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, G.C., Videira, S.S., Urquiaga, S. et al. Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant Soil 387, 307–321 (2015). https://doi.org/10.1007/s11104-014-2295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2295-2

Keywords

Navigation