Skip to main content
Log in

Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Biochar could be used as a soil amendment in metal contaminated soils, for safe crop production or soil remediation purposes. This work was conducted to study the effects of biochar amendments on metal uptake by two contrasted plants grown on metal-contaminated soils.

Methods

A non-hyperaccumulating plant (Lolium perenne) and a Cd- and Zn-hyperaccumulator (Noccea caerulescens) were grown in pots on acidic (A) and alkaline (B) soil contaminated by Cd, Pb and Zn, both amended by a wood-derived biochar.

Results

Biochar amendments decreased the availability of metals by increasing soil pH, but also decreased Ca, P and N availability. Growth of L. perenne was increased and shoot metal uptake decreased by biochar addition in both soils, although increasing biochar dose above 0.5 % resulted in a progressive decrease of shoot production on soil B. Growth of N. caerulescens was not significantly affected by biochar. But an increase of Cd uptake with 5 % biochar was recorded on both soils, and of Zn uptake on soil B.

Conclusions

Beside immobilizing metals, biochar may decrease the availability of nutrients, leading either to plant deficiency or to a decreased competition with cations for metal uptake, thus enhancing extraction of metals by hyperaccumulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

WHC:

Water holding capacity

References

  • AFNOR: Association Française de Normalisation (2013) Normes. http://www.boutique.afnor.org/normes-produitsedition. Accessed 15 March 2013

  • Alloway BJ (2013) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability, 3rd edn. Springer

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654. doi:10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants—a feasibility study. In Situ Bioreclamation 600–605. doi:10.1016/B978-0-7506-9301-1.50049-4

  • Baronti S, Alberti G, Delle Vedove G, Di Gennaro F, Fellet G, Genesio L, Miglietta F, Peressotti A, Primo Vaccari F (2010) The Biochar Option to Improve Plant Yields: First Results From Some Field and Pot Experiments in Italy. Ital J Agron 5. doi:10.4081/ija.2010.3

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287. doi:10.1016/j.envpol.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. doi:10.1016/j.envpol.2011.07.023

    Article  CAS  PubMed  Google Scholar 

  • Bravin M, Martí A, Clairotte M, Hinsinger P (2009) Rhizosphere alkalisation—a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant Soil 318:257–268. doi:10.1007/s11104-008-9835-6

    Article  CAS  Google Scholar 

  • Bruemmer GW, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z Pflanzenernähr Bodenkd 149:382–398. doi:10.1007/978-3-642-70441-3_11

    Article  CAS  Google Scholar 

  • Chaignon V, Bedin F, Hinsinger P (2002) Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and calcareous soil. Plant Soil 243:219–228. doi:10.1023/A:1019942924985

    Article  CAS  Google Scholar 

  • Chaignon V, Quesnoit M, Hinsinger P (2009) Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil. Environ Pollut 157:3363–3369. doi:10.1016/j.envpol.2009.06.032

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486. doi:10.1007/s004250000458

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources 6:2605–2618

    CAS  Google Scholar 

  • Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214. doi:10.1007/BF00029330

    Article  Google Scholar 

  • Fellet G, Marmiroli M, Marchiol L (2014) Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ 468:598–608. doi:10.1016/j.scitotenv.2013.08.072

    Article  PubMed  Google Scholar 

  • Gartler J, Robinson B, Burton K, Clucas L (2013) Carbonaceous soil amendments to biofortify crop plants with zinc. Sci Total Environ 465:308–313. doi:10.1016/j.scitotenv.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  • Gonneau C, Genevois N, Frérot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384(1–2):271–287. doi:10.1007/s11104-014-2208-4

  • Graber ER, Meller Harel Y, Kolton M, Cytryn E, Silber A, Rav-David D, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496. doi:10.1007/s11104-010-0544-6

    Article  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116:73–78. doi:10.1034/j.1399-3054.2002

    Article  CAS  PubMed  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57:196–204. doi:10.1016/j.biombioe.2013.07.019

    Article  CAS  Google Scholar 

  • Hu Y, Wang NS, Hu XJ, Lin XY, Feng Y, Jin CW (2013) Nitrate nutrition enhances nickel accumulation and toxicity in Arabidopsis plants. Plant Soil 371:105–115. doi:10.1007/s11104-013-1682-4

    Article  CAS  Google Scholar 

  • Hu J, Wu F, Wu S, Lam CL, Lin X, Wong MH (2014) Biochar and Glomus caledonium Influence Cd Accumulation of Upland Kangkong (Ipomoea aquatica Forsk.) Intercropped with Alfred Stonecrop (Sedum alfredii Hance). Scientific Reports 4. doi:10.1038/srep04671

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Report No 103, FAO, Rome

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. doi:10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  • Karami N, Clemente R, Moreno-Jimenez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:141–148. doi:10.1016/j.jhazmat.2011.04.025

    Google Scholar 

  • Kopittke PM, Wang P, Menzies NW, Naidu R, Kinraide TB (2014) A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces. Plant Soil 375:35–46. doi:10.1007/s11104-013-1948-x

    Article  CAS  Google Scholar 

  • Kukier U, Chaney RL (2004) In situ remediation of nickel phytotoxicity for different plant species. J Plant Nutr 27:465–495. doi:10.1081/PLN-120028874

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Chang 11:403–427. doi:10.1007/s11027-005-9006-5

    Article  Google Scholar 

  • Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468. doi:10.1021/es0208963

    Article  CAS  Google Scholar 

  • Lu H, Li Z, Fu S, Méndez A, Gascó G, Paz-Ferreiro J (2014) Can biochar and phytoextractors be jointly used for cadmium remediation? PLoS ONE 9. doi:10.1371/journal.pone.0095218

  • Maathuis FJ (2007) Transport across plant membranes. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blackwell Publishing, Oxford

    Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London

    Google Scholar 

  • Meers E, Tack FM, Van Slycken S, Ruttens A, Du Laing G, Vangronsveld J, Verloo MG (2008) Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int J Phytoremediation 10:390–414. doi:10.1080/15226510802100515

    Article  CAS  PubMed  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13. doi:10.1093/aob/mcn063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morel JL (1997) Assessment of phytoavailability of trace elements in soils. Analusis 25:70–72

    Google Scholar 

  • Namgay TA, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res 48:638–647. doi:10.1071/SR10049

    Article  CAS  Google Scholar 

  • Park J, Choppala G, Bolan N, Chung J, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451. doi:10.1007/s11104-011-0948-y

    Article  CAS  Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005) Low-cost agricultural measures to reduce heavy metal transfer into the food chain—a review. Plant Soil Environ 51:1–11

    Article  Google Scholar 

  • Rees F, Simonnot MO, Morel JL (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65:149–161. doi:10.1111/ejss.12107

    Article  CAS  Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediat 3:145–172. doi:10.1080/15226510108500054

    Article  CAS  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 15 March 2013

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35. doi:10.1023/A:1022584220411

    Article  CAS  Google Scholar 

  • Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443–452. doi:10.1007/s11104-010-0359-5

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut 135:173–194. doi:10.1023/A:1014758811194

    Article  CAS  Google Scholar 

  • Sterckeman T, Duquene L, Perriguey J, Morel JL (2005) Quantifying the effect of rhizosphere processes on the availability of soil cadmium and zinc. Plant Soil 276:335–345. doi:10.1007/s11104-005-5087-x

    Article  CAS  Google Scholar 

  • Sterckeman T, Redjala T, Morel JL (2011) Influence of exposure solution composition and of plant cadmium content on root cadmium short-term uptake. Environ Exp Bot 74:131–139. doi:10.1016/j.envexpbot.2011.05.010

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. doi:10.1111/j.1469-8137.2008.02748.x

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Kinraide TB, Zhou D, Kopittke PM, Peijnenburg W (2011) Plasma membrane surface potential: dual effects upon ion uptake and toxicity. Plant Physiol 155:808–820. doi:10.1104/pp. 110.165985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu G, Wei LL, Sun JN, Shao HB, Chang SX (2013) What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecol Eng 52:119–124. doi:10.1016/j.ecoleng.2012.12.091

    Article  Google Scholar 

  • Zhang Z, Solaiman ZM, Meney K, Murphy DV, Rengel Z (2013) Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. J Soils Sediments 13:140–151. doi:10.1007/s11368-012-0571-4

    Article  Google Scholar 

  • Zheng RL, Cai C, Liang JH, Huang Q, Chen Z, Huang YZ, Sun GX (2012) The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89:856–862. doi:10.1016/j.chemosphere.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Wang Z, Deng X, Zhao J, Luo Y, Novak J, Xing B (2013) Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour Technol 130:463–471. doi:10.1016/j.biortech.2012.12.044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been carried out within the GISFI (www.gisfi.fr) in the framework of the LORVER project (www.lorver.org) funded by the French Lorraine Region and ERDF. The authors wish to thank the technical staff of LSE and GISFI, particularly Noële Raoult, Rémi Baldo, Stéphane Colin, Lucas Charrois, Romain Goudon and Alain Rakoto, and Claude Gallois from LAE. They are grateful to Apolline Auclerc, Sophie Joimel and Marie Rue, and wish to thank Hans Peter Schmidt for the provision of biochar. The authors also thank the two reviewers for their helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Morel.

Additional information

Responsible Editor: Johannes Lehmann.

Electronic supplementary material

All complementary results can be found in Fig. S1-S4 and Tables S1-S17 in the Supplementary Information file available online.

ESM 1

(DOCX 2284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rees, F., Germain, C., Sterckeman, T. et al. Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395, 57–73 (2015). https://doi.org/10.1007/s11104-015-2384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2384-x

Keywords

Navigation