Skip to main content
Log in

Isolation and characterisation of endophytic actinobacteria and their effect on the early growth and nodulation of lucerne (Medicago sativa L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Endophytic actinobacteria are known to benefit their hosts by improving plant growth and by reducing the severity of soil borne diseases. In this study, their role in enhancing the growth of lucerne and their interaction with its rhizobial symbiosis is examined. Comparison is made between endophytic actinobacteria isolated from wheat plants and isolates from the roots and nodules of four different legume species: lucerne (Medicago sativa L.), field pea (Pisum sativum L.), subterranean clover (Trifolium subterraneum L.) and burr medic (Medicago polymorpha L.).

Methods

Two hundred and twenty five isolates of actinobacteria were recovered from the legumes. Five selected legume isolates were compared to five wheat isolates for their effects on rhizobial growth on agar and on the early nodulation and growth of lucerne plants inoculated with Sinorhizobium meliloti strain RRI 128.

Results

Co-inoculation with lucerne isolates Streptomyces spp. LuP30 and LuP47B, increased lucerne shoot dry weight at 7 weeks after inoculation by 25 to 35 %, and shoot nitrogen content by 22 to 28 % respectively, compared to plants treated with Sinorhizobium meliloti RRI 128 alone.

Conclusions

This study shows that some endophytic actinobacteria have the potential to enhance the lucerne – rhizobia symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Hasan SA, Ahmad A (2008) A comparative effect of IAA and 4-Cl-IAA on growth, nodulation and nitrogen fixation in Vigna radiata (L.) Wilczek. Acta Physiologiae Plantarum 30:35–41

  • Antoun H, Bordeleau LM, Gagnon C, Lachance RA (1978) Actinomycetes antagonistic to fungi and not affecting Rhizobium meliloti. Can J Microbiol 24:558–562

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JT, Franco CMM, Loria R (2003) Complete sequencing and analysis of pEN2701, a novel 13-kb plasmid from an endophytic Streptomyces sp. Plasmid 49:86–92

    Article  CAS  PubMed  Google Scholar 

  • Damirgi SM, Johnson HW (1966) Effect of soil actinomycetes on strains of Rhizobium japonicum. Agron J 58:223–224

    Article  Google Scholar 

  • Doumbou CL, Salove MKH, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Article  Google Scholar 

  • El-Tarabily KA, Nassar HA, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Appl Soil Ecol 39:161–171

    Article  Google Scholar 

  • Ferguson BJ, Indra Sumunar A, Hayashi S, Lin M, Lin Y, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integ Plant Biol 52:61–76

  • Fitscher H (1994) Genetic regulation of Nitrogen fixation in rhizobia. Microbiological Reviews 58:352–386

  • Franco CMM, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs TJ (2007) Actinobacterial endophytes for improved crop performance Australasian. Plant Pathol 36:524–531

    Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. doi: 10.1079/9780851994178.0000

  • Gregor AK, Klubek B, Varsa EC (2003) Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicum. Can J Microbiol 49:483–491

    Article  CAS  PubMed  Google Scholar 

  • Khanmna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  Google Scholar 

  • Kiss SA, Stefanovits-Ba’nyai E, Taka’cs-Ha’jos M (2004) Magnesium-content of Rhizobium nodules in different plants: the importance of magnesium in nitrogen-fixation of nodules. J Am Coll Nutr 23:751S–753S

    Article  CAS  PubMed  Google Scholar 

  • Le HX (2010) Interaction of endophytic actinobacteria with rhizobia in leguminous plants. Flinders University

  • Le HX, Franco CMM, Ballard RA (2014) Isolation and characterisation of endophytic actinobacteria and their effect on the early growth and nodulation of lucerne (Medicago sativa L.). In: Gupta VVSR, Unkovich M, Kaiser BN (eds) The 17th Australian Nitrogen Fixation Conference, Adelaide, Australia. pp 134–135

  • Martínez-Hidalgo P, Galindo-Villardón P, Igual JM, Martínez-Molina E (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep 4:1–9

    Article  Google Scholar 

  • Miles AA, Misra SS (1938) The estimation of the bactericidal power of the blood. J Hyg 38:732–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmnoi P, Pongsilp N, Lumyong S (2014) Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant growth. J Plant Nutr 37:432–446

    Article  Google Scholar 

  • Oka-Kira E, Kawaguchi M (2006) Long-distance signalling to control root nodule number. Curr Opin Plant Biol 9:496–502

  • Patel JJ (1974) Antagonism of actinomycetes against Rhizobia. Plant Soil 41:395–402

    Article  Google Scholar 

  • Peoples MB, Baldock JA (2001) Nitrogen dynamics of pastures: nitrogen fixation inputs, the impact of legumes on soil nitrogen fertility, and the contributions of fixed nitrogen to Australian farming systems. Aust J Exp Agric 41:327–346

    Article  CAS  Google Scholar 

  • Radovic’ J, Solokovic’ D, Markovic’ J (2009) Alfalfa-most important legume in animal husbandry. Biotechnol Anim Husb 25:465–475

    Article  Google Scholar 

  • Reeve W, Ballard R, Drew E, Tian R, Brau L, Goodwin L, Huntemann M, Han J, Tatiparthi R, Chen A, Mavrommatis K, Markowitz V, Palaniappan K, Ivanova N, Pati A, Woyke T, Kyrpides N (2014) Genome sequence of the Medicago-nodulating Ensifer meliloti commercial inoculant strain RRI128. Standards in Genomic Sciences 9:602–613

  • Robertson MJ (2006) Lucerne prospects: drivers for the widespread adoption of Lucerne for profit and salinity management. Cooperative Research Centre for Plant -based Management of Dryland Salinity, Perth

    Google Scholar 

  • Robson AD, O’Hara GW, Abbott LK (1981) Involvement of phosphorous in nitrogen fixation by subterranean clover (Trifolium subterraneum L.). Aust J Plant Physiol 8:427–436

    Article  CAS  Google Scholar 

  • Sharma S, Aneja MK, Mayer J, Munch JC, Schloter M (2005) Characterization of bacterial community structure in rhizosphere soil of grain legumes. Microb Ecol 49:407–415

    Article  CAS  PubMed  Google Scholar 

  • Soe KM, Bhromsiri A, Karladee D, Yamakawa T (2012) Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr 58:319–325. doi:10.1080/00380768.2012.682044

    Article  Google Scholar 

  • Solans M, Vobis G, Wall LG (2009) Saprophytic actinomycetes promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high nitrogen. J Plant Growth Regul 28:106–114

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo ME, Alonso-Vega P, Rodri’guez R, Carro L, Cerda E, Alonso P, Marti’nez-Molina E (2010) The genus micromonospora is widespread in legume root nodules: the example of lupinus angustifolius. ISME J 4:1265–1281

    Article  PubMed  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Fernandez-Molonero C, Schumann P, Marti’nez-Molina E (2007) Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Schumann P, Martinez-Molina E (2006) Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius. Int J Syst Evol Microbiol 56:407–411

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plnt growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss J Basic Microbiol 51:550–556

    Article  CAS  PubMed  Google Scholar 

  • Whitman W, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-I, Parte A (2012) Bergey’s manual of systematic bacteriology. In: Whitman WB et al (eds) The actinobacteria, part A, vol 5, 2nd edn. Springer, New York. doi:10.1007/978-0-387-68233-4

    Google Scholar 

  • Yamagishi M, Yamamoto Y (1994) Effects of boron on nodule development and symbiotic nitrogen fixation in soybean plants. Soil Sci Plant Nutr 40:265–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to South Australian Research Institute for the supply of lucerne seeds and rhizobial cultures and Flinders University for an International Research Scholarship to Xuyen Hoang Le.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. M. Franco.

Additional information

Responsible Editor: Kari Saikkonen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, X.H., Franco, C.M.M., Ballard, R.A. et al. Isolation and characterisation of endophytic actinobacteria and their effect on the early growth and nodulation of lucerne (Medicago sativa L.). Plant Soil 405, 13–24 (2016). https://doi.org/10.1007/s11104-015-2652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2652-9

Keywords

Navigation