Skip to main content
Log in

Trichoderma harzianum T6776 modulates a complex metabolic network to stimulate tomato cv. Micro-Tom growth

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Trichoderma harzianum 6776 is a novel and beneficial tomato fungal isolate. To investigate the mechanisms underlying the T. harzianum 6776-tomato interaction, several physiological and biochemical responses were explored on dwarf tomato plants, cv. Micro-Tom.

Methods

Growth of treated and untreated plants was evaluated by measuring the height and biomass production of plants. The leaf pigment content and sugar partitioning in plant organs were evaluated by biochemical analysis. The photosynthetic parameters were measured by a miniaturized PAM fluorometer and a portable gas-exchange system. The hormonal analysis in root and xylem sap was performed by gas cromatography- mass spectrometry (GC-MS).

Results

T. harzianum 6776 positively affected plant growth, increasing the leaf pigment content and improving the photosynthetic activity at both stomatal and non-stomatal levels. Differences in pigment composition and photosynthetic performance were reflected in the carbohydrate content and their partitioning. In the absence of a pathogen, root and xylem vessel stress and growth-related hormone balance were affected by the interaction with T. harzianum 6776, with an increase in jasmonic and indoleacetic acids and a decrease in salicylic acid content.

Conclusions

This study shows the complex connection between increased hormone accumulation and transport, altered sugar partitioning and enhanced photosynthetic efficiency induced by T. harzianum 6776, and how growth promotion is the result of the combination of these drastic changes in Micro-Tom plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

T6776:

Trichoderma harzianum strain 6776

MT:

Micro-Tom plants

JA:

Jasmonic acid

SA:

Salicylic acid

IAA:

Indol-acetic acid

DPI:

Days post inoculum

DPS:

Days post sowing

PSII:

Photosystem II

References

  • Alonso-Ramírez A, Poveda J, Martín I, Hermosa R, Monte E, Nicolàs C (2014) Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol Plant Pathol 1–31. doi: 10.1111/mpp.12141

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth- promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arie T, Takahashi H, Kodama M, Teraoka T (2007) Tomato as a model plant for plant-pathogen interactions. Plant Biotechnol 24:135–147. doi:10.5511/plantbiotechnology.24.135

    Article  CAS  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719. doi:10.1094/MPMI-21-6-0709

    Article  CAS  PubMed  Google Scholar 

  • Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orians CM (2005) Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol 167:63–72. doi:10.1111/j.1469-8137.2005.01388.x

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Roberts DP, Lim H-S, Stream MD, Park S, Ryu C, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351. doi:10.1094/MPMI-09-10-0221

    Article  CAS  PubMed  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464. doi:10.1007/s00425-006-0314-0

    Article  CAS  PubMed  Google Scholar 

  • Baroncelli R, Piaggeschi G, Fiorini L, Bertolini E, Zapparata A, Pè E, Sarrocco S, Vannacci G (2015) Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. 3:9–10. doi: 10.1128/genomeA.00647-15

  • Benhamou N, Grenier J, Chrispeels MJ (1991) Accumulation of beta-Fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiol 97:739–750. doi:10.1104/pp. 97.2.739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bharti MK, Sharma AK, Pandey AK, Mall R (2012) Physiological and biochemical basis of growth suppressive and growth promotory effect of Trichoderma strains on tomato plants. Natl Acad Sci Lett 35:355–359. doi:10.1007/s40009-012-0058-2

    Article  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185. doi:10.1007/BF00033159

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. doi:10.1371/journal.ppat.1003221

    PubMed  Google Scholar 

  • Campos ML, Carvalho RF, Benedito VA, Peres LEP (2010) Small and remarkable: the Micro-Tom model system as a tool to discover novel hormonal functions and interactions. Plant Signal Behav 5:267–270. doi:10.4161/psb.5.3.10622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho RF, Campos ML, Pino LE, Crestana SL, Zsogon A, Lima JE, Benedito VA, Peres LEP (2011) Convergence of developmental mutants into a single tomato model system: “Micro-Tom” as an effective toolkit for plant development research. Plant Methods 7:18. doi:10.1186/1746-4811-7-18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chacón MR, Rodríguez-Galán O, Benítez T, Sousa S, Rey M, Llobell A, Delgrado-Jarana J (2007) Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. Int Microbiol 10:19–27. doi:10.2436/20.1501.01.4

    PubMed  Google Scholar 

  • Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107:558–590. doi:10.3852/14-147

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117. doi:10.1016/j.biocontrol.2012.11.009

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592. doi:10.1104/pp. 108.130369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, Lòpez-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma spp. improve growth of Arabidopsis Seedlings under salt stress through enhanced root development, osmolite production, and Na(+) elimination through root exudates. Mol Plant Microbe Interact 27:503–514. doi:10.1094/MPMI-09-13-0265-R

    Article  CAS  PubMed  Google Scholar 

  • Fernández E, Segarra G, Trillas MI (2014) Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato. Biol Control 78:77–85. doi:10.1016/j.biocontrol.2014.06.012

    Article  Google Scholar 

  • Furch ACU, Zimmermann MR, Kogel KH, Reichelt M, Mithofer A (2014) Direct and individual analysis of stress-related phytohormone dispersion in the vascular system of Cucurbita maxima after flagellin 22 treatment. New Phytol 201:1176–1182. doi:10.1111/nph.12661

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990:87–92

    Article  CAS  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977. doi:10.1016/j.soilbio.2007.02.015

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. doi:10.1038/nrmicro797

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004b) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153. doi:10.1094/PHYTO.2004.94.2.147

    Article  PubMed  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599. doi:10.1016/j.phytochem.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Belén Rubio M, Cardoza RE, Nicòlas C, Monte E, Gutiérrez S (2013) The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 16:69–80. doi:10.2436/20.1501.01.181

    CAS  PubMed  Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    Article  CAS  Google Scholar 

  • Kobayashi M, Nagasaki H, Garcia V, Just D, Bres C, Mauxion JP, Le Paslier MC, Brunel D, Suda K, Minakuchi Y, Toyoda A, Fujiyama A, Toyoshima H, Suzuki T, Igarashi K, Rothan C, Kaminuma E, Nakamura Y, Yano K, Aoki K (2014) Genome-wide analysis of intraspecific dna polymorphism in “micro-tom”, a model cultivar of tomato (Solanum lycopersicum). Plant Cell Physiol 55:445–454. doi:10.1093/pcp/pct181

    Article  CAS  PubMed  Google Scholar 

  • Lahrmann U, Strehmel N, Langen G, Frerigmann H, Leson L, Ding Y, Scheel D, Herklotz S, Hilbert M, Zuccaro A (2015) Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. New Phytol. doi:10.1111/nph.13411

    PubMed  Google Scholar 

  • Lichtenthaler HK (1987) [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, Garcia JM, Azcòn-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601. doi:10.1093/jxb/erq089

    Article  PubMed Central  PubMed  Google Scholar 

  • Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. J Plant Growth Regul 30:405–415. doi:10.1007/s00344-011-9204-1

    Article  CAS  Google Scholar 

  • Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334–344. doi:10.1104/pp. 127.1.334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez-Medina A, Roldán A, Albacete A, Pascual JA (2011) The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72:223–229. doi:10.1016/j.phytochem.2010.11.008

    Article  PubMed  Google Scholar 

  • Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206. doi:10.3389/fpls.2013.00206

    Article  PubMed Central  PubMed  Google Scholar 

  • Martínez-Medina A, Del Mar Alguacil M, Pascual JA, Van Wees SCM (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815. doi:10.1007/s10886-014-0478-1

    Article  PubMed  Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221. doi:10.1094/PHYTO-03-10-0091

    Article  PubMed  Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2012) Enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant-Microbe Interact 25:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Matsuura H, Takeishi S, Kiatoka N, Sato C, Sueda K, Masuta C, Nabeta K (2012) Transportation of de novo synthesized jasmonoyl isoleucine in tomato. Phytochemistry 83:25–33. doi:10.1016/j.phytochem.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  • Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472. doi:10.1046/j.1365-313x.1997.12061465.x

    Article  CAS  Google Scholar 

  • Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67:149–156

    Article  Google Scholar 

  • Nzanza B, Marais D, Soundy P (2012) Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Sci Hortic (Amst) 144:55–59. doi:10.1016/j.scienta.2012.06.005

    Article  CAS  Google Scholar 

  • Ohyama A, Nishimura S, Hirai M (1998) Cloning of cDNA for a cell wall-bound acid invertase from tomato (Lycopersicon esculentum) and expression of soluble and cell wall-bound invertases in plants and wounded leaves of L. esculentum and L. peruvianum. Genes Genet Syst 73:149–157. doi:10.1266/ggs.73.149

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316. doi:10.1038/nchembio.164

    Article  CAS  PubMed  Google Scholar 

  • Pompeiano A, Fanucchi F, Guglielminetti L (2013) Amylolytic activity and carbohydrate levels in relation to coleoptile anoxic elongation in Oryza sativa genotypes. J Plant Res 126:787–794. doi:10.1007/s10265-013-0567-1

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates - signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Quach HT, Steeper RL, Griffin GW (2004) An improved method for the extraction and thin-layer chromatography of chlorophyll a and b from spinach. J Chem Educ 81:385. doi:10.1021/ed081p385

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B (1993a) A methyl jasmonate-induced shift in the length of the 5’ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12:1505–1512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reinbothe S, Reinbothe C, Parthier B (1993b) Methyl jasmonate-regulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv. salome). J Biol Chem 268:10606–10611

    CAS  PubMed  Google Scholar 

  • Sarrocco S, Guidi L, Fambrini S, Degl’Innocenti E, Vannacci G (2009) Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolates in the decomposition of wheat straw. J Plant Pathol 91:331–338

    CAS  Google Scholar 

  • Sarrocco S, Moncini L, Pachetti G, Vannacci G (2013) Trichoderma harzianum 6776, a promising biocontrol agent and plant growth promoter. IOBC Bull 86:189–194

    Google Scholar 

  • Scott H (1989) Micro Tom-a miniature dwarf tomato. Florida Agr Expt Sta Circ 370:1–6

    Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163. doi:10.1104/pp. 108.123810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43. doi:10.1146/annurev-phyto-073009-114450

    Article  CAS  PubMed  Google Scholar 

  • Tejeda-Sartorius M, Martínez De La Vega O, Délano-Frier JP (2008) Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol Plant 133:339–353. doi:10.1111/j.1399-3054.2008.01081.x

    Article  CAS  PubMed  Google Scholar 

  • Tobias RB, Boyer CD, Shannon JC (1992) Alterations in carbohydrate intermediates in the endosperm of starch-deficient maize (Zea mays L.) genotypes. Plant Physiol 99:146–152. doi:10.1104/pp. 99.1.146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. doi:10.1038/nature11119

    Article  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354. doi:10.1111/j.1364-3703.2010.00674.x

    Article  CAS  PubMed  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808. doi:10.1104/pp.109.141291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vargas WA, Crutcher FK, Kenerley CM (2011) Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytol 189:777–789. doi:10.1111/j.1469-8137.2010.03517.x

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221. doi:10.1016/S0079-6603(02)72070-9

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242. doi:10.1023/A:1011990013955

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to dedicate this work to Maurizio Forti who passed away in December 2013. This work is part of the PhD research activity of Lisa Fiorini (PhD Course of Agriculture, Food and Environment, University of Pisa, Italy).

The authors also thank Prof. Alberto Pardossi (University of Pisa) for the Micro-Tom seeds used in this work and for his support in setting up the hydroponic cultivation system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Fiorini.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorini, L., Guglielminetti, L., Mariotti, L. et al. Trichoderma harzianum T6776 modulates a complex metabolic network to stimulate tomato cv. Micro-Tom growth. Plant Soil 400, 351–366 (2016). https://doi.org/10.1007/s11104-015-2736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2736-6

Keywords

Navigation