Skip to main content
Log in

Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study evaluated the effect of phloem translocation on Ni accumulation in the hyperaccumulator Noccaea caerulescens.

Methods

The first experiment assessed the metal and organic compound concentrations in phloem sap. Leaves were cut from plants grown in nutrient solutions added with 100 μM Ni or Zn, and then used for phloem sap extraction by means of the EDTA-stimulated exudation method. In the second experiment, 61Ni2+ was applied to old leaves as a foliar spray to assess bidirectional movement of Ni in phloem.

Results

In the first experiment, enrichment of Ni or Zn was found in phloem exudates, indicating high Ni and Zn phloem loading and translocation capacity in N. caerulescens. Amino acids, e.g. nicotianamine and histidine, were present at low concentrations in exudates, which are insufficient for Ni and Zn chelation. On the contrary, concentrations of organic acids, especially malate, were high in all treatments, which may be involved in Ni and Zn chelation in phloem. The second experiment showed that 89 % of 61Ni exported from old leaves was translocated upward to young leaves, whereas only 11 % moved downward to roots.

Conclusions

Phloem sap of N. caerulescens is enriched in Ni and malate, the majority of which moves upward to young tissues. Phloem translocation may play an important role for Ni accumulation in young leaves of N. caerulescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez-Fernández A, Díaz-Benito P, Abadía A, Lopez-Millan A-F, Abadía J (2014) Metal species involved in long distance metal transport in plants. Front Plant Sci 5:105. doi:10.3389/fpls.2014.00105

    Article  PubMed  PubMed Central  Google Scholar 

  • Ando Y, Nagata S, Yanagisawa S, Yoneyama T (2012) Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Funct Plant Biol 40:89–100, 10.1071/FP12158

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Centofanti T, Sayers Z, Cabello-Conejo M, Kidd P, Nishizawa N, Kakei Y, Davis A, Sicher R, Chaney R (2013) Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species. Plant Soil 373:59–75. doi:10.1007/s11104-013-1782-1

    Article  CAS  Google Scholar 

  • Chen S, Petersen BL, Olsen CE, Schulz A, Halkier BA (2001) Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol 127:194–201. doi:10.1104/pp.127.1.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55:746–759. doi:10.1111/j.1365-313X.2008.03555.x

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Fismes J, Echevarria G, Leclerc-Cessac E, Morel JL (2005) Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination. J Environ Qual 34:1497–1507. doi:10.2134/jeq2004.0274

    Article  CAS  PubMed  Google Scholar 

  • Fondy BR, Geiger DR (1980) Effect of rapid changes in sink-source ratio on export and distribution of products of photosynthesis in leaves of Beta vulgaris L. and Phaseolus vulgaris L. Plant Physiol 66:945–949. doi:10.1104/pp.66.5.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groeber S, Przybyłowicz W, Echevarria G, Montarges-Pelletier E, Barnabas A, Mesjasz-Przybyłowicz J (2015) Fate of nickel and calcium in seedlings of the hyperaccumulator Berkheya coddii during germination. Biol Plant 59:560–569. doi:10.1007/s10535-015-0527-9

    Article  CAS  Google Scholar 

  • Guelette BS, Benning UF, Hoffmann-Benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot 63:3603–3616. doi:10.1093/jxb/ers028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395. doi:10.1038/nature06877

    Article  CAS  PubMed  Google Scholar 

  • Haritatos E, Medville R, Turgeon R (2000) Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211:105–111. doi:10.1007/s004250000268

    Article  CAS  PubMed  Google Scholar 

  • Harris WR, Sammons RD, Grabiak RC (2012) A speciation model of essential trace metal ions in phloem. J Inorg Biochem 116:140–150. doi:10.1016/j.jinorgbio.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  • Hazama K, Nagata S, Fujimori T, Yanagisawa S, Yoneyama T (2014) Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn, and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiol Plant 154:243–255. doi:10.1111/ppl.12309

    Article  PubMed  Google Scholar 

  • Hocking PJ (1983) The dynamics of growth and nutrient accumulation by fruits of grevillea leucopteris meissn., a proteaceous shrub, with special reference to the composition of xylem and phloem sap. New Phytol 93:511–529. doi:10.1111/j.1469-8137.1983.tb02702.x

    Article  CAS  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia. Science 193:579–580. doi:10.1126/science.193.4253.579

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300. doi:10.1093/jexbot/52.365.2291

    Article  PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiol 134:748–757. doi:10.1104/pp.103.032953

    Article  PubMed  PubMed Central  Google Scholar 

  • King RW, Zeevaart JAD (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53:96–103. doi:10.1104/pp.53.1.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Erlikh NT, Shevyreva TA, Andreev IM, Verweij R, Schat H (2014) Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol 203:508–519. doi:10.1111/nph.12816

    Article  CAS  PubMed  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi:10.1146/annurev-arplant-042809-112156

    Article  PubMed  Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  • Kuppelwieser H, Feller U (1991) Transport of Rb and Sr to the ear in mature, excised shoots of wheat: Effects of temperature and stem length on Rb removal from the xylem. Plant Soil 132:281–288. doi:10.1007/BF00010409

    CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883. doi:10.1104/pp.118.3.875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Tian S, Zhang J, Yang X, Labavitch JM, Webb SM, Latimer M, Brown PH (2013) Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol 198:721–731. doi:10.1111/nph.12168

    Article  CAS  PubMed  Google Scholar 

  • Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122. doi:10.1093/jxb/erl184

    Article  CAS  PubMed  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13. doi:10.1093/aob/mcn063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda ER, Pattanagul W, Madore MA (2001) Phloem transport of solutes in crop plants. In: Pessarakli M (ed) Handbook of plant and crop physiology, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel J-L (2008) Identification of nickel chelators in three hyperaccumulating plants: An X-ray spectroscopic study. Phytochemistry 69:1695–1709. doi:10.1016/j.phytochem.2008.02.009

    Article  PubMed  Google Scholar 

  • Neumann PM, Chamel A (1986) Comparative phloem mobility of nickel in nonsenescent plants. Plant Physiol:689–691

  • Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T (2012) Identification of Zn–nicotianamine and Fe–2′-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.). Plant Cell Physiol 53:381–390. doi:10.1093/pcp/pcr188

    Article  CAS  PubMed  Google Scholar 

  • Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96:425–434. doi:10.1093/aob/mci189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page V, Weisskopf L, Feller U (2006) Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol 171:329–341. doi:10.1111/j.1469-8137.2006.01756.x

    Article  CAS  PubMed  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823. doi:10.1104/pp.104.044503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer WA, Mahmoudian M, Freeman JL, Lahner B, Richards EL, Reeves RD, Murphy AS, Salt DE (2006) Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol 172:248–260. doi:10.1111/j.1469-8137.2006.01820.x

    Article  CAS  PubMed  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci 97:4956–4960. doi:10.1073/pnas.97.9.4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazain R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224. doi:10.1111/j.1469-8137.1996.tb01888.x

    Article  CAS  Google Scholar 

  • Richau KH, Kozhevnikova AD, Seregin IV, Vooijs R, Koevoets PLM, Smith JAC, Ivanov VB, Schat H (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 183:106–116. doi:10.1111/j.1469-8137.2009.02826.x

    Article  CAS  PubMed  Google Scholar 

  • Riesen O, Feller U (2005) Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J Plant Nutr 28:421–430. doi:10.1081/PLN-200049153

    Article  CAS  Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86. doi:10.1016/s0375-6742(97)00010-1

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using x-ray absorption spectroscopy. Environ Sci Technol 33:713–717. doi:10.1021/es980825x

    Article  CAS  Google Scholar 

  • Schaumloffel D, Ouerdane L, Bouyssiere B, Lobinski R (2003) Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by HPLC and CZE with ICP MS and electrospray MS-MS detection. J Anal Atom Spectrom 18:120–127. doi:10.1039/B209819A

    Article  Google Scholar 

  • Schmidke I, Stephan UW (1995) Transport of metal micronutrients in the phloem of castor bean (Ricinus communis) seedlings. Physiol Plant 95:147–153. doi:10.1111/j.1399-3054.1995.tb00821.x

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tetyuk O, Benning UF, Hoffmann-Benning S (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated method. J Vis Exp:e51111. doi:10.3791/51111

  • Tolrà RP, Poschenrieder C, Barceló J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II Influence on organic acids. J Plant Nutr 19:1541–1550. doi:10.1080/01904169609365220

    Article  Google Scholar 

  • van der Ent A, Baker AM, Reeves R, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334. doi:10.1007/s11104-012-1287-3

    Article  Google Scholar 

  • van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408. doi:10.1007/s10886-015-0573-y

    Article  PubMed  Google Scholar 

  • Wiersma D, van Goor BJ (1979) Chemical forms of nickel and cobalt in phloem of Ricinus communis. Physiol Plant 45:440–442. doi:10.1111/j.1399-3054.1979.tb02610.x

    Article  CAS  Google Scholar 

  • Yoneyama T, Gosho T, Kato M, Goto S, Hayashi H (2010) Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.) grown in continuously flooded Cd-contaminated soil. Soil Sci Plant Nutr 56:445–453. doi:10.1111/j.1747-0765.2010.00481.x

    Article  CAS  Google Scholar 

  • Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simonnot M-O (2014) Selection and combustion of Ni-hyperaccumulators for the phytomining process. Int J Phytoremediation 16:1058–1072. doi:10.1080/15226514.2013.810585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhang Renduo and Dr. Wang Shizhong for their constructive comments on this study. This work was supported by the National Natural Science Foundation of China (No. 41371315, No. 41225004), the Fundamental Research Funds for the Central Universities (No.15lgjc36) and Special Fund of Environmental Protection Research for Public Welfare (No. 20150937).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye-Tao Tang or Rong-Liang Qiu.

Additional information

Responsible Editor: Henk Schat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, THB., Tang, YT., van der Ent, A. et al. Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404, 35–45 (2016). https://doi.org/10.1007/s11104-016-2825-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2825-1

Keywords

Navigation