Skip to main content
Log in

Pre-colonization of PGPR triggers rhizosphere microbiota succession associated with crop yield enhancement

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Plant growth-promoting rhizobacteria (PGPR) substantially improve plant growth and health, but their effects on the succession of rhizosphere microbiota throughout the growth period triggered by pre-inoculation have not yet been considered.

Methods

Pepper seedlings cultured from a bio-nursery substrate containing Bacillus velezensis NJAU-Z9 and ordinary nursery substrate were used in this study to evaluate the effects of pre-colonization of a PGPR strain at the seedling stage on yield enhancement. To elucidate the underlying mechanisms involved in the rhizosphere microbiota succession during the whole growth period and their association with yield enhancement, high-throughput sequencing combined with qPCR was conducted.

Results

The results showed that, compared to the control without inoculation, pre-inoculation led to a steady yield enhancement in two-season field trials, as well as higher rhizosphere bacterial richness (Chao1) and diversity (Shannon-Wiener). The plant growth stage as the first driving factor, followed by pre-colonization drove the variations of the rhizosphere microbial community composition according to multivariate regression tree analysis and principal coordinate analysis. Variance partitioning analysis (VPA) and Mantel test results showed that the previous plant growth period induced variations in the fungal and bacterial communities at the next stage. Compared to the seedling and flowering stages, the mature-stage microbial community showed a higher degree of explanation of yield enhancement. Additionally, pre-inoculation led to distinctive rhizosphere microbiota succession compared to the control, due to alteration of the initial community. The heat map analysis showed that the rhizosphere microbiota was related to crop yield. In addition to Bacillus velezensis NJAU-Z9, which showed stable abundance in the pepper rhizosphere, stable higher relative abundance of the bacterial genera Sphingomonas, Sphingopyxis, Bradyrhizobium, Chitinophaga, Dyadobacter, Streptomyces, Lysobacter, Pseudomonas and Rhizomicrobium, and the fungal genera Cladorrhinum, Cladosporium and Aspergillus throughout the growth period induced by pre-colonization was associated with yield enhancement.

Conclusions

Overall, we conclude that pre-colonization with PGPR changed the initial rhizosphere microbiota and that the plant was triggered to further select distinctive microbes to form unique rhizosphere microbial consortia at the later growth stages, which resulted in plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bahme JB, Schroth MN (1987) Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77:1093–1100

    Article  Google Scholar 

  • Bakker MG, Chaparro JM, Manter DK, Vivanco JM (2015) Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant Soil 392:115–126

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Braun-kiewnick A, Jacobsen BJ, Sands DC (2000) Biological control of Pseudomonas syringae pv. Syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology 90:368–375

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaney RL, Munns JB, Cathey HM (1980) Effectiveness of digested sewage sludge compost in supplying nutrients for soilless potting media. J Am Soc Hortic Sci 105:485–492

    CAS  Google Scholar 

  • De'Ath G (2002) Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83:1105–1117

    Google Scholar 

  • Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Araújo WL, Azevedo JL, Melo IS (2009) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195

    Article  CAS  Google Scholar 

  • Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garridooter R, Wunder J, Coupland G, Schulzelefert P (2016) Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME J 11:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, Elsas JDV, Veen JAV (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, Shen Q (2017) Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem 104:39–48

    Article  CAS  Google Scholar 

  • Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23

    Article  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbail diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gasoni L, Gurfinkel BSD (1997) The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth. Mycol Res 101:867–870

    Article  Google Scholar 

  • Gerardo P, Oscar G, Ilaria P (2014) Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine. Microbiol Res 169:633–642

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Kudapa H, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B (2015) Effect of plant growth-promoting Streptomyces sp. on growth promotion and grain yield in chickpea (Cicer arietinum L). Biotech 5:799–806

    CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, Hussain J, Sohn EY, Lee IJ (2010) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102:989–995

    Article  CAS  PubMed  Google Scholar 

  • Hartman K, Heijden MGAVD, Wittwer RA, Banerjee S, Walser JC, Schlaeppi K (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM, Dessaux Y, Hinsinger P, Lemanceau P (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Wei R, Jiang H, Yang XM, Xu YC, Shen QR (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J 74:2039

    Article  CAS  Google Scholar 

  • Jorquera MA, Shaharoona B, Nadeem SM, De lLMM, Crowley DE (2012) Plant growth-promoting Rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017

    Article  PubMed  Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  CAS  PubMed  Google Scholar 

  • Kolton M, Meller HY, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77:4924–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Suyal DC, Bhoriyal M, Goel R (2018) Plant growth promoting potential of psychrotolerant Dyadobacter sp. for pulses and finger millet and impact of inoculation on soil chemical properties and diazotrophic abundance. J Plant Nutr 41:1035–1046

    Article  CAS  Google Scholar 

  • Lang J, Hu J, Wei R, Xu Y, Shen Q (2012) Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol Fertil Soils 48:191–203

    Article  Google Scholar 

  • Lareen A, Burton F, Schãfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasudee K, Tokuyama S, Lumyong S, Pathom-Aree W (2016) Mycorrhizal spores associated Lysobacter soli and its plant growth promoting activity. Chiang Mai J Sci 44:94–101

    Google Scholar 

  • Lewis JA, Fravel DR, Papavizas GC (1995) Cladorrhinum foecundissimum: a potential biological control agent for the reduction of Rhizoctonia solani. Soil Biol Biochem 27:863–869

    Article  CAS  Google Scholar 

  • Liljeroth E, Lundborg T (1990) Root exudation and rhizoplane bacterial abundance of barley (Hordeum vulgare L.) in relation to nitrogen fertilization and root growth. Plant Soil 127:81–89

    Article  CAS  Google Scholar 

  • Liu H, Chen D, Zhang R, Hang X, Li R, Shen Q (2016) Amino acids hydrolyzed from animal carcasses are a good additive for the production of bio-organic fertilizer. Front Microbiol 7:1290

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Xiong W, Zhang R, Hang X, Wang D, Li R, Shen Q (2018) Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora. Plant Soil 423:1–12

    Article  CAS  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172

    Article  PubMed  Google Scholar 

  • Macdonald LM, Paterson E, Dawson LA, Mcdonald AJS (2004) Short-term effects of defoliation on the soil microbial community associated with two contrasting Lolium perenne cultivars. Soil Biol Biochem 36:489–498

    Article  CAS  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  PubMed  Google Scholar 

  • Menaviolante HG, Olaldeportugal V (2007) Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci Hortic 113(1):103–106

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, De BI, Dekkers E, Van dVM, Schneider JH, Piceno YM, Desantis TZ, Andersen GL, Bakker PA (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mendes LW, Raaijmakers JM, Hollander MD, Mendes R, Tsai SM (2017) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12:212–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng Q, Jiang H, Hao JJ (2016) Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol Control 98:18–26

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: Community Ecology Package. URL http://CRAN.R-project.org/package=vegan, R package version 2.0-10. Accessed 2 Sept 2014

  • Pan S, Liu C, Huang F, Yalan LI, Tang H, Yang T (2016) Influence of root exudates on efficiency of rhizosphere microbial degradation under PAHs stress. Journal of Chengdu University 35:86–89

    Google Scholar 

  • Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroonga N (2011) Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47:44–54

    Article  CAS  Google Scholar 

  • Probanza A, Lucas Garcia JA, Ruiz PM, Ramos B, Gutierrez Manero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl Soil Ecol 20:75–84

    Article  Google Scholar 

  • Qian GL, Bai-Shi HU, Jiang YH, Liu FQ (2009) Identification and characterization of lysobacter enzymogenes as a biological control agent against some fungal pathogens. Agric Sci China 8:68–75

    Article  CAS  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406

    CAS  PubMed  Google Scholar 

  • Santhanam R, Oh Y, Kumar R, Weinhold A, Luu VT, Groten K, Baldwin IT (2017) Specificity of root microbiomes in native-grown Nicotiana attenuata and plant responses to UVB increase Deinococcus colonization. Mol Ecol 26:2543–2562

    Article  CAS  PubMed  Google Scholar 

  • Scher FM (1985) Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Can J Microbiol 31:570–574

    Article  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111:585–592

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P (2018) Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J 12:1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shcherbakova EN, Shcherbakov AV, Andronov EE, Gonchar LN, Kalenskaya SM, Chebotar VK (2017) Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis 73:57–69

    Article  CAS  Google Scholar 

  • Shen Z, Zhong S, Wang Y, Wang B, Mei X, Li R, Ruan Y, Shen Q (2013) Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. Eur J Soil Biol 57:1–8

    Article  Google Scholar 

  • Shen Z, Penton CR, Lv N, Xue C, Yuan X, Ruan Y, Li R, Shen Q (2017) Banana fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microb Ecol 75:1–12

    Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Song S, Fu L, Deng X, Wang D, Liang X, Li R, Shen Q (2015) Exploring a soil fumigation strategy based on ammonium bicarbonate to control Fusarium wilts of cucurbits. Crop Prot 70:53–60

    Article  CAS  Google Scholar 

  • Thiery BCA, Sharif B, Dossou GF, Helmut B (2015) Cotton fertilization using PGPR Bacillus amyloliquefaciens FZB42 and compost: impact on insect density and cotton yield in North Benin, West Africa. Cogent Food Agric 1(1). https://doi.org/10.1080/23311932.2015.1063829

  • Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET (2018) Core microbiomes for sustainable agroecosystems. Nature Plants 4:247–257

  • Trabelsi D, Mengoni A, Ammar HB, Mhamdi R (2011) Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol Ecol 77:211–222

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Ammar HB, Mengoni A, Mhamdi R (2012) Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biol Biochem 54:1–6

    Article  CAS  Google Scholar 

  • Vannier N, Mony C, Bittebiere AK, Michoncoudouel S, Biget M, Vandenkoornhuyse P (2018) A microorganisms’ journey between plant generations. Microbiome 6:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Guo S, Huang M, Thorsten LH, Wei J (2010) Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci China Life Sci 53:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A (2015) Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun 6:8413

    Article  CAS  PubMed  Google Scholar 

  • Weller DM (1984) Distribution of a take-all suppressive strain of Pseudomonas fluorescens on seminal roots of winter wheat. Appl Environ Microbiol 48:897–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM (2003) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Werner GDA, Kiers ET (2015) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322

    Google Scholar 

  • White LJ, Ge X, Brözel VS, Subramanian S (2017) Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere. Environ Microbiol 19:1391–1406

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Ren H, Li S, Leng X, Yao X (2017) Soil bacterial community structure and co-occurrence pattern during vegetation restoration in karst rocky desertification area. Front Microbiol 8:2377

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wang N, Guo X, Zhang Y, Ye B (2017) Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One 12:e0178425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Du BH, Jin ZG, Li ZH, Song HN, Ding YQ (2011) Analysis of bacterial communities in rhizosphere soil of healthy and diseased cotton (Gossypium sp.) at different plant growth stages. Plant Soil 339:447–455

    Article  CAS  Google Scholar 

  • Zhang Y, Wen CY, Zhao MQ, Zhang M, Gao Q, Li R, Shen QR (2015) Isolation of plant growth promoting rhizobacteria from pepper and development of bio-nursery substrates. J Nanjing Agric Univ  6:950–957

    Google Scholar 

  • Zhang Y, Gao X, Wang S, Zhu C, Li R, Shen Q (2018) Application of Bacillus velezensis NJAU-Z9 enhanced plant growth associated with efficient rhizospheric colonization monitored by qPCR with primers designed from the whole genome sequence. Curr Microbiol 75:1574–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Basic Research Program of China (2015CB150506), the Fundamental Research Funds for the Central Universities (KYZ201871 and KJQN201746), the Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD), the 111 project (B12009), the Top-notch Academic Programs Project of the Jiangsu Higher Education Institution (PPZY2015A061), the Innovative Research Team Development Plan of the Ministry of Education of China (IRT_17R56), and the China Scholarship Council (award to Rong Li for 1 year’s abroad study).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Li.

Additional information

Responsible Editor: Birgit Mitter.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

ESM 2

(XLSX 15 kb)

ESM 3

(XLSX 15 kb)

ESM 4

(XLSX 25 kb)

ESM 5

(XLSX 12 kb)

ESM 6

(XLSX 14 kb)

ESM 7

(XLSX 14 kb)

Fig. S1

Cladogram of the linear discriminant effect size analysis of the results of comparisons between the bio-nursery (OFBS) treatment and control in different growth stages for the bacterial and fungal communities. Red circles represent taxa that were abundant in the OFBS treatment and green circles represent taxa that were abundant in the control treatment. Only taxa meeting a linear discriminant analysis significance threshold of 2.0 are shown. The six rings of the cladogram represent phylum, class, order, family, genus and OTU. SOS: seedling stage in the OF treatment, SBS: seedling stage in the OFBS treatments; MOS: mature stage in the OF treatment, MBS: mature stage in the OFBS treatments. (PNG 2679 kb)

High Resolution

(TIF 12745 kb)

Fig. S2

Spearman’s correlations between the bacterial and fungal OTUs and the yield of pepper. (PNG 4193 kb)

High Resolution

(TIF 5186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, X., Shen, Z. et al. Pre-colonization of PGPR triggers rhizosphere microbiota succession associated with crop yield enhancement. Plant Soil 439, 553–567 (2019). https://doi.org/10.1007/s11104-019-04055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04055-4

Keywords

Navigation