Skip to main content

Advertisement

Log in

Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

In the soil ecosystem, microbial diversity exists and these diverse organisms interact with plant roots and influence the physicochemical properties of plants. Some of these diverse microorganisms can cause diseases or can provide beneficial interactions with plants. Rhizobacteria are well-known beneficial microorganism that colonize the plant root zone (rhizosphere) and are referred to as plant growth-promoting rhizobacteria (PGPR) that contribute to the promotion of plant growth either directly or indirectly. PGPRs are also known for their biocontrol abilities. Sclerotinia sclerotiorum, an Ascomycetous soil inhabiting fungus, causes white rot disease in cucumbers. This disease results in the loss of millions of dollars annually. The current study was conducted to isolate naturally occurring soil inhabiting bacteria that may promote plant growth under diseased conditions and also antagonize the pathogen.

Scope

The isolated LH4 strain was identified as Streptomyces sp. by 16S rRNA sequencing and phylogenetic analysis. The plant growth promoting effects and the antifungal antagonistic activities against Sclerotinia sclerotiorum were confirmed by measuring enzymatic activity of LH4 and demonstration in planta. In addition, Streptomyces sp. LH4 pure culture application exhibited significant growth inhibition of S. sclerotiorum in cucumber. Analysis of the major hormones related to pathogen defense; the jasmonic acid, and salicylic acid, showed that the modulation of these two hormones increased disease resistance in cucumber.

Conclusion

The present study suggests a possible dual role of Streptomyces sp. LH4 as functional material for bio-fertilizer and biocontrol against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PGPR:

Plant growth-promoting rhizobacteria

SA:

salicylic acid

JA:

jasmonic acid

P:

phosphate

ABA:

abscisic acid

IAA:

auxins

NCBI:

National Center for Biotechnology Information

SEM:

Scanning Electron Microscopy

NBRIP:

National Botanical Research Institute’s P growth

CMC:

carboxymethyl cellulose

PDA:

potato dextrose agar

References

  • Abd El Rahman T, El Oirdi M, Gonzalez-Lamothe R, Bouarab K (2012) Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Mol Plant-Microbe Interact 25(12):1584–1593. https://doi.org/10.1094/Mpmi-07-12-0187-R

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science 26(1):1–20

    Google Scholar 

  • Al-Askar A (2012) Microbiological studies on the in vitro inhibitory effect of Streptomyces collinus albescens against some phytopathogenic fungi. Afr J Microbiol Res 6(13):3277–3283

    CAS  Google Scholar 

  • Aleandri MP, Chilosi G, Bruni N, Tomassini A, Vettraino AM, Vannini A (2015) Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Prot 67:269–278

    Google Scholar 

  • Alkooranee JT, Aledan TR, Ali AK, Lu GY, Zhang XK, Wu JS et al (2017) Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. PLoS One 12(1). https://doi.org/10.1371/journal.pone.0168850

  • Ansary WR, Prince FRK, Haque E, Sultana F, West HM, Rahman M et al (2018) Endophytic Bacillus spp. from medicinal plants inhibit mycelial growth of Sclerotinia sclerotiorum and promote plant growth. Zeitschrift für Naturforschung C 73(5–6):247–256

    CAS  Google Scholar 

  • Baniasadi F, Bonjar GS, Baghizadeh A, Nik AK, Jorjandi M, Aghighi S, Farokhi PR (2009) Biological control of Sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soil borne actinomycetes isolates. Am J Agric Biol Sci 4(2):146–151

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology 35(4):1044–1051. https://doi.org/10.1590/S1415-47572012000600020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertrand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biology and Fertility of Soils 33(2):152–156. https://doi.org/10.1007/s003740000305

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology & Biotechnology 28(4):1327–1350. https://doi.org/10.1007/s11274-011-0979-9

    Article  CAS  Google Scholar 

  • Bitsadze N, Siebold M, Koopmann B, von Tiedemann A (2015) Single and combined colonization of Sclerotinia sclerotiorum sclerotia by the fungal mycoparasites Coniothyrium minitans and Microsphaeropsis ochracea. Plant Pathol 64(3):690–700

    CAS  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7(1):1–16. https://doi.org/10.1111/J.1364-3703.2005.00316.X

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39(5):425–430

    PubMed  CAS  Google Scholar 

  • Cecagno R, Fritsch TE, Schrank IS (2015) The plant growth-promoting Bacteria Azospirillum amazonense: genomic versatility and Phytohormone pathway. Biomed Research International. https://doi.org/10.1155/2015/898592

  • Cheng G, Huang Y, Yang H, Liu F (2014) Streptomyces felleus YJ1: potential biocontrol agents against the sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. Journal of Agricultural Science (Toronto) 6(4):91–98

    Google Scholar 

  • Chitrampalam P, Figuli P, Matheron ME, Subbarao K, Pryor BM (2008) Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minor in desert agroecosystems. Plant Dis 92(12):1625–1634

    PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959. https://doi.org/10.1128/Aem.71.9.4951-4959.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conn V, Walker A, Franco C (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(2):208–218

    PubMed  CAS  Google Scholar 

  • Dalili A, Bakhtiari S, Barari H, Aldaghi M (2015) Effect of some fungicides against the growth inhibition of Sclerotinia sclerotiorum mycelial compatibility groups. Journal of plant protection research 55(4):354–361

    CAS  Google Scholar 

  • de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54(6):807–816. https://doi.org/10.1007/s10526-009-9226-9

    Article  Google Scholar 

  • Dinesh R, Anandaraj M, Kumar A, Bini YK, Subila KP, Aravind R (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43. https://doi.org/10.1016/j.micres.2015.01.014

    Article  PubMed  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157(3):361–379. https://doi.org/10.1111/j.1744-7348.2010.00439.x

    Article  CAS  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308(1–2):161–174

    CAS  Google Scholar 

  • El-Tarabily K, Nassar A, Hardy GSJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106(1):13–26

    PubMed  CAS  Google Scholar 

  • El-Tarabily K, Soliman M, Nassar A, Al-Hassani H, Sivasithamparam K, McKenna F, Hardy GSJ (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49(5):573–583

    Google Scholar 

  • Errakhi R, Bouteau F, Lebrihi A, Barakate M (2007) Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J Microbiol Biotechnol 23(11):1503–1509

    CAS  Google Scholar 

  • Evangelista-Martínez Z (2014) Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol 30(5):1639–1647

    PubMed  Google Scholar 

  • Fernando W, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26(2):100–107

    Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea J-M (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45(3):209–217

    Google Scholar 

  • Gerlagh M, Goossen-van de Geijn HM, Fokkema NJ, Vereijken PFG (1999) Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum infected crops. Phytopathology 89(2):141–147. https://doi.org/10.1094/Phyto.1999.89.2.141

    Article  PubMed  CAS  Google Scholar 

  • Getha K, Vikineswary S (2002) Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. J Ind Microbiol Biotechnol 28(6):303–310

    PubMed  CAS  Google Scholar 

  • González-Franco AC, Robles-Hernandez R (2009) Actinomycetes as biological control agents of phytopathogenic fungi. Tecnociencia Chihuahua 3(2):64–73

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015a) Plant growth promoting rhizobia: challenges and opportunities. 3. Biotech 5(4):355–377. https://doi.org/10.1007/s13205-014-0241-x

    Article  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney RK (2015b). The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp in chickpea. Springerplus, 4. Doi: 10.1186/s40064-015-0811-3

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney R (2015c) Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Org Agric 5(2):123–133

    Google Scholar 

  • Gopalakrishnan S, Srinivas V, Vidya MS, Rathore A (2013) Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. Springerplus (2, 1):574

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Kudapa H, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169(1):40–48

    PubMed  CAS  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2017). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res

  • Gracia-Garza J, Reeleder R, Paulitz T (1997) Degradation of sclerotia of Sclerotinia sclerotiorum by fungus gnats (Bradysia coprophila) and the biocontrol fungi Trichoderma spp. Soil Biol Biochem 29(2):123–129

    CAS  Google Scholar 

  • Hamdia ABE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44(2):165–174

    CAS  Google Scholar 

  • Hausler RE, Ludewig F, Krueger S (2014) Amino acids - A life between metabolism and signaling. Plant Sci 229:225–237. https://doi.org/10.1016/j.plantsci.2014.09.011

    Article  PubMed  CAS  Google Scholar 

  • Heng J, Shah U, Rahman N, Shaari K, Hamzah H (2015) Streptomyces ambofaciens S2—a potential biological control agent for colletotrichumgleosporioides the causal agent for anthracnose in red chilli fruits. J Plant Pathol Microbiol S 1:2

    Google Scholar 

  • Hildebrandt TM, Nesi AN, Araujo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8(11):1563–1579. https://doi.org/10.1016/j.molp.2015.09.005

    Article  PubMed  CAS  Google Scholar 

  • Igarashi Y, Iida T, Yoshida R, Furumai T (2002) Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. The Journal of antibiotics 55(8):764–767

    PubMed  CAS  Google Scholar 

  • Inderjit, van der Putten, W. H. (2010) Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol 25(9):512–519. https://doi.org/10.1016/j.tree.2010.06.006

  • Jones EE, Rabeendran N, Stewart A (2014) Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Sci Tech 24(12):1363–1382

    Google Scholar 

  • Joo G-J (2005) Production of an anti-fungal substance for biological control of Phytophthora capsici causing phytophthora blight in red-peppers by Streptomyces halstedii. Biotechnol Lett 27(3):201–205

    PubMed  CAS  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35(2):323–331

    CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7(11):1809–1817. https://doi.org/10.1111/j.1462-2920.2005.00889.x

    Article  PubMed  CAS  Google Scholar 

  • Karimi E, Sadeghi A, Abbaszadeh Dahaji P, Dalvand Y, Omidvari M, Kakuei Nezhad M (2012) Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol Sci Tech 22(3):333–349

    Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting Rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria xananassa). HortScience 48(5):563–567

    CAS  Google Scholar 

  • Khair A (2011) In vitro antifungal activity of Streptomyces spororaveus RDS28 against some phytopathogenic fungi. Afr J Agric Res 6(12):2835–2842

    Google Scholar 

  • Kim AY, Shahzad R, Kang SM, Khan AL, Lee SM, Park YG et al (2017) Paenibacillus terrae AY-38 resistance against Botrytis cinerea in Solanum lycopersicum L.plants through defence hormones regulation. J Plant Interact 12(1):244–253. https://doi.org/10.1080/17429145.2017.1319502

    Article  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35(2):141–151. https://doi.org/10.1071/Fp07218

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31(1–2):91–100. https://doi.org/10.1016/j.apsoil.2005.03.007

    Article  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499. https://doi.org/10.1016/j.micres.2012.05.002

    Article  PubMed  CAS  Google Scholar 

  • Lavakush, Yadav, J., Verma, J.P, Jaiswal, D. K., & Kumar, A. (2014). Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng, 62, 123–128. doi:https://doi.org/10.1016/j.ecoleng.2013.10.013

  • Li GQ, Huang HC, Acharya S (2003) Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biol Control 28(1):11–18

    Google Scholar 

  • Liang J, Xue Q, Niu X, Li Z (2005) Root colonization and effects of seven strains of actinomycetes on leaf PAL and PPO activities of capsicum. Acta Botan Boreali-Occiden Sin 25(10):2118–2123

    CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201–208. https://doi.org/10.5423/Ppj.Si.02.2013.0021

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobo Júnior M, Abreu M d (2000) Inibição do crescimento micelial de Sclerotinia sclerotiorum por metabólitos voláteis produzidos por alguns antagonistas em diferentes temperaturas e pH's. Ciência e Agrotecnologia, Lavras 24(2):521–526

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 86(1):1–25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    CAS  Google Scholar 

  • Mahadevan B, Crawford DL (1997) Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzym Microb Technol 20(7):489–493

    CAS  Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology 6. https://doi.org/10.3389/fmicb.2015.00198

  • Maldonado MC, Orosco CEF, Gordillo M, Navarro AR (2010). In vivo and in vitro antagonism of Streptomyces sp. RO3 against Penicillium digitatum and Geotrichum candidum

  • Matroudi S, Zamani M (2009). Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem rot. Egyptian Journal of Biology, 11(1)

  • McCloud ES, Baldwin IT (1997) Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203(4):430–435. https://doi.org/10.1007/s004250050210

    Article  CAS  Google Scholar 

  • Meena H, Ahmed MA, Prakash P (2015) Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Bioscience Biotechnology Research Communications 8(2):171–174

    Google Scholar 

  • Meguro A, Ohmura Y, Hasegawa S, Shimizu M, Nishimura T, Kunoh H (2006) An endophytic actinomycete, Streptomyces sp. MBR-52, that accelerates emergence and elongation of plant adventitious roots. Actinomycetologica 20(1):1–9

    CAS  Google Scholar 

  • Mendis HC, Thomas VP, Schwientek P, Salamzade R, Chien JT, Waidyarathne P et al (2018) Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions. PLoS One 13(2):e0193119. https://doi.org/10.1371/journal.pone.0193119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moe LA (2013) Amino acids in the Rhizosphere: from plants to microbes. Am J Bot 100(9):1692–1705. https://doi.org/10.3732/ajb.1300033

    Article  PubMed  CAS  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2014) Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant nutrition. J Plant Nutr 37(3):432–446

    CAS  Google Scholar 

  • Ningthoujam S, Sanasam S, Tamreihao K, Nimaich S (2009) Antagonistic activities of local actinomycete isolates against rice fungal pathogens. Afr J Microbiol Res 3(11):737–742

    Google Scholar 

  • Novakova M, Sasek V, Dobrev PI, Valentova O, Burketova L (2014) Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiol Biochem 80:308–317. https://doi.org/10.1016/j.plaphy.2014.04.019

    Article  PubMed  CAS  Google Scholar 

  • Onaran A, Yanar Y (2011) Screening bacterial species for antagonistic activities against the Sclerotinia sclerotiorum (lib.) De Bary causal agent of cucumber white mold disease. Afr J Biotechnol 10(12):2223–2229

    Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh J-W (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97(22):9621–9636

    PubMed  CAS  Google Scholar 

  • Pandey C, Bajpai VK, Negi YK, Rather IA, Maheshwari D (2018a). Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi Journal of Biological Sciences

  • Pandey C, Bajpai VK, Negi YK, Rather IA, Maheshwari DK (2018b) Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J Biol Sci 25(6):1066–1071. https://doi.org/10.1016/j.sjbs.2018.03.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patil HJ, Srivastava AK, Singh DP, Chaudhari BL, Arora DK (2011) Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Prot 30(10):1269–1273

    CAS  Google Scholar 

  • Pereira JCR, Chaves G, Zambolim L, Matsuoka K, Silva-acuña R (1996). Controle integrado de Sclerotinia sclerotiorum. Embrapa Amazônia Ocidental-Artigo em periódico indexado (ALICE)

  • Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5–6):325–336. https://doi.org/10.1016/j.micres.2013.09.011

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, Vol 28(28):489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055

    Article  CAS  Google Scholar 

  • Porcel R, Zamarreno AM, Garcia-Mina JM, Aroca R (2014). Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. Bmc Plant Biology, 14. Doi:Artn 36 10.1186/1471-2229-14-36

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4(5):330–337

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65(19):5535–5556. https://doi.org/10.1093/jxb/eru320

    Article  PubMed  CAS  Google Scholar 

  • Rhee K-H (2003) Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. Journal of Microbiology and Biotechnology 13(6):984–988

    CAS  Google Scholar 

  • Rothrock CS, Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can J Microbiol 30(12):1440–1447

    Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102(3):463–472

    PubMed  CAS  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268(1–2):285–292. https://doi.org/10.1007/s11104-004-0301-9

    Article  CAS  Google Scholar 

  • Sangmanee P, Bhromsiri A, Akarapisan A (2009). The potential of endophytic actinomycetes,(Streptomyces sp.) for the biocontrol of powdery mildew disease in sweet pea (Pisum sativum). As J Food Ag-Ind, 93, e8

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States of America 97(21):11655–11660. https://doi.org/10.1073/pnas.97.21.11655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisanatac I, Scala F et al (1994) Parallel formation and synergism of hydrolytic enzymes and Peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma-Harzianum against Phytopathogenic Fungi. Appl Environ Microbiol 60(12):4364–4370

    PubMed  PubMed Central  CAS  Google Scholar 

  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiology 116(1):387–392. https://doi.org/10.1104/pp.116.1.387

    Article  PubMed Central  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159. https://doi.org/10.1111/j.1472-765X.2005.01827.x

    Article  PubMed  CAS  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2017) Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp lycopersici in tomato. Peerj, 5. Doi:ARTN e310710.7717/peerj.3107

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89(1):92–99

    PubMed  CAS  Google Scholar 

  • Smolińska U, Kowalska B (2018) Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum –– a review. J Plant Pathol 100(1):1–12. https://doi.org/10.1007/s42161-018-0023-0

    Article  Google Scholar 

  • Steindorff AS, Ramada MHS, Coelho ASG, Miller RNG, Pappas GJ, Ulhoa CJ, Noronha EF (2014) Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics 15(1):204

    PubMed  PubMed Central  Google Scholar 

  • Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U (2016) Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270. https://doi.org/10.1016/j.micres.2016.08.005

    Article  PubMed  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra M (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68(5):2161–2171

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tozlu E, Mohammadi P, Kotan MS, Nadaroglu H, Kotan R (2016) Biological control of Sclerotinia sclerotiorum (lib.) de Bary, the causal agent of white Mould disease in red cabbage, by some Bacteria. Plant Protection Science 52(3):188–198. https://doi.org/10.17221/96/2015-Pps

    Article  CAS  Google Scholar 

  • Trutmann P, Keane PJ (1990) Trichoderma koningii as a biological control agent for Sclerotinia sclerotiorum in southern Australia. Soil Biol Biochem 22(1):43–50

    Google Scholar 

  • Tzin V, Galili G (2010) The biosynthetic pathways for Shikimate and aromatic amino acids in Arabidopsis thaliana. Arabidopsis Book 8:e0132. https://doi.org/10.1199/tab.0132

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang XY (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ Exp Bot 117:28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36:453–483. https://doi.org/10.1146/annurev.phyto.36.1.453

    Article  PubMed  Google Scholar 

  • Van Peer R, Niemann G, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81(7):728–734

    Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2–3):127–141

    PubMed  CAS  Google Scholar 

  • Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG (2017) Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the Management of Stem rot of carnation caused by Sclerotinia sclerotiorum. Frontiers in Microbiology, 8. Doi:ARTN 44610.3389/fmicb.2017.00446

  • Viterbo A, Horwitz BA (2010). Mycoparasitism Cellular and molecular biology of filamentous fungi (pp. 676-693): American society of microbiology

  • Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences 19(4):952

    PubMed Central  Google Scholar 

  • Wang Z, Tan XL, Zhang ZY, Gu SL, Li GY, Shi HF (2012) Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Plant Sci 184:75–82. https://doi.org/10.1016/j.plantsci.2011.12.013

    Article  PubMed  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81(11):1508–1512

    Google Scholar 

  • Westfall CS, Muehler AM, Jez JM (2013) Enzyme action in the regulation of plant hormone responses. J Biol Chem 288(27):19304–19311. https://doi.org/10.1074/jbc.R113.475160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whipps JM, Gerlagh M (1992) Biology of Coniothyrium-Minitans and its potential for use in disease biocontrol. Mycological Research 96:897–907. https://doi.org/10.1016/S0953-7562(09)80588-1

    Article  Google Scholar 

  • Woo J-H, Kamei Y (2003) Antifungal mechanism of an anti-Pythium protein (SAP) from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl Microbiol Biotechnol 62(4):407–413

    PubMed  CAS  Google Scholar 

  • Wu J, Zhao Q, Yang QY, Liu H, Li QY, Yi XQ, . . . Zhou YM (2016). Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Scientific Reports, 6. Doi:ARTN 1900710.1038/srep19007

  • Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., McInroy, J. A. (2017). Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS One, 12(7). Doi:ARTN e018120110.1371/journal.pone.0181201

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31(8):1217–1225

    PubMed  CAS  Google Scholar 

  • Zahed MJ, Purabaei AA, Behbodi K, & S, E. (2018). Biological control of Sclerotinia sclerotiorum (Lib) De Bary cause the cucumber white stem rot by rhizospheric Actinobacteria. Biological control of Pests & Plant Diseases, 7(1), 33–45. doi:10.22059/jbioc.2017.230696.191

  • Zeng W, Wang D, Kirk W, Hao J (2012) Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol Control 60(2):225–232

    Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B04035601) to In-Jung Lee and by a grant from the Next-Generation BioGreen 21 Program (Grant No. PJ01367901), Rural Development Administration, Republic of Korea to Bong-Gyu Mun.

Author information

Authors and Affiliations

Authors

Contributions

WHL, BGM and SMK designed the study and performed main experiments. SUL, SML, MS, WHL and DYL analyzed the data and performed supplementary experiments. BGM, WHL and MS wrote the manuscript and revised manuscript. BWY and IJL supervised the overall experiment and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Byung-Wook Yun or In-Jung Lee.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Stéphane Compant.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Supplementary Fig. 1 Phylogenetic tree analysis of Streptomyces sp. strain LH4. 16S rRNA sequences were used from related taxa for phylogenetic tree analysis using MEGA (v7.01) (JPG 1092 kb)

ESM 2

(XLSX 16.6 kb)

ESM 3

(DOCX 14.8 kb)

ESM 4

(JPG 252 kb)

ESM 5

(JPG 1.10 MB)

ESM 6

(JPG 450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mun, BG., Lee, WH., Kang, SM. et al. Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant Soil 448, 87–103 (2020). https://doi.org/10.1007/s11104-019-04411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04411-4

Keywords

Navigation