Skip to main content
Log in

Investigation of nonlinear effects in few-mode fibers

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this work, nonlinear optical effects are exploited for future implementations of space-division multiplexing fiber systems. The paper first presents the fundamentals of intermodal nonlinear phenomena over few-mode fibers, such as cross-phase modulation, four-wave mixing (FWM), stimulated Brillouin scattering and stimulated Raman scattering. Second, the potential applications of few-mode nonlinear effects are discussed for sensing and optical signal processing. We demonstrated how fiber mode symmetries and linear mode coupling affect intermodal power transfer and spectral broadening. Lastly, the paper proposes a ultrafast all-optical simultaneous wavelength and mode conversion scheme based on intermodal FWM, with the capability of switching state of polarization and mode degeneracy orientation. Under this scheme, cross-polarization modulation and cross-mode modulation can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Richardson, D.J., Fini, J.M., Nelson, L.E.: Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013)

    Article  Google Scholar 

  2. Essiambre, R.-J., Ryf, R., Fontaine, N.K., Randel, S.: Breakthroughs in photonics 2012: space-division multiplexing in multimode and multicore fibers for high-capacity optical communication. IEEE Photonics J. 5(2), 0701307 (2013)

    Article  Google Scholar 

  3. Li, A., Chen, X., Amin, AAl, Ye, J., Shieh, W.: Space-division multiplexed high-speed superchannel transmission over few-mode fiber. J. Lightwave Technol. 30(24), 3953–3964 (2012)

    Article  Google Scholar 

  4. Randel, S., Ryf, R., Schmidt, C., Mestre, M.A., Winzer, P.J., Essiambre, R.J.: MIMO processing for space-division multiplexed transmission. In: Proceedings of Signal Processing in Photonic Communications (SPPCOM). Paper SpW3B.4 (2012)

  5. Ryf, R., et al.: 12 \(\times \) 12 MIMO transmission over 130-km few-mode fiber. In: Proceedings of Frontiers in Optics (FiO). Paper FW6C.4 (2012)

  6. Ferreira, F., Jansen, S., Monteiro, P., Silva, H.: Nonlinear semi-analytical model for simulation of few-mode fiber transmission. IEEE Photonics Technol. Lett. 24(4), 240–242 (2012)

    Article  Google Scholar 

  7. Weng, Y., He, X., Wang, J., Zhu, B., Pan, Z.: Theoretical analysis and numerical simulation of inter-modal four-wave-mixing in few mode fibers. In: Proceedings of Wireless and Optical Communication Conference (WOCC 2014). Paper O3.4

  8. Essiambre, R.-J., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662–701 (2012)

    Article  Google Scholar 

  9. Pan, Z., Weng, Y., He, X.: Investigation of the nonlinearity in few mode fibers. In: Proceedings of 13th International Conference on Optical Communications and Networks (ICOCN). pp. 1–4 (2014)

  10. Koebele, C., Salsi, M., Charlet, G., Bigo, S.: Nonlinear effects in mode-division-multiplexed transmission over few-mode optical fiber. IEEE Photonics Technol. Lett. 23(18), 1316–1318 (2011)

    Article  Google Scholar 

  11. Ramachandran, S.: Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices. J. Lightwave Technol 23(11), 3426–3443 (2005)

    Article  Google Scholar 

  12. Buck, J.A.: Fundamentals of Optical Fibers. Wiley, Hoboken (1995)

    Google Scholar 

  13. Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic, New York (2013)

    MATH  Google Scholar 

  14. Marcuse, D.: Theory of Dielectrical Optical Waveguides, 2nd edn. Academic Press, New York (1991)

    Google Scholar 

  15. Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic Press, New York (2008)

    Google Scholar 

  16. Poletti, F., Horak, P.: Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B 25(10), 1645–1654 (2008)

    Article  Google Scholar 

  17. Agrawal, G.P., Mumtaz, S., Essiambre, R.-J.: Nonlinear performance of SDM systems designed with multimode or multicore fibers. In: Proceedings of Optical Fiber Communication Conference (OFC 2013). Paper OM3I.6

  18. Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics, 2nd edn. Wiley-Interscience, Hoboken (2007)

    Google Scholar 

  19. Li, A., Chen, X., Shieh, W.: Nonlinear tolerance of few-mode fiber based transmission systems with random mode coupling. In: Proceedings of Optical Fiber Communication Conference (OFC). Paper JTh2A.12 (2013)

  20. Mumtaz, S., Essiambre, R.-J., Agrawal, G.P.: Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations. J. Lightwave Technol. 31(3), 398–406 (2013)

    Article  Google Scholar 

  21. Suibhne, N.M., Watts, R., Sygletos, S., Gunning, F.C.G., Gruner-Nielsen, L., Ellis, A.D.: Nonlinear pulse distortion in few-mode fiber. In: Proceedings of European Conference and Exhibition on Optical Communication (ECOC). Paper Th.2.F.5 (2012)

  22. Ferreira, M.F.: Nonlinear Effects in Optical Fibers, 1st edn. Wiley-OSA, Hoboken (2011)

    Book  Google Scholar 

  23. Trillo, S., Wabnitz, S., Wright, E.M., Stegeman, G.I.: Optical solitary waves induced by cross-phase modulation. Opt. Lett. 13(10), 871–873 (1988)

    Article  Google Scholar 

  24. Hofer, M., Fermann, M.E., Haberl, F., Ober, M.H., Schmidt, A.J.: Mode locking with cross-phase and self-phase modulation. Opt. Lett. 16(7), 502–504 (1991)

    Article  Google Scholar 

  25. Inoue, K., Toba, H.: Wavelength conversion experiment using fiber four-wave mixing. IEEE Photonics Technol. Lett. 4(1), 69–72 (1992)

    Article  Google Scholar 

  26. Andrekson, P.A., Olsson, N.A., Simpson, J.R., Tanbun-Ek, T., Logan, R.A., Haner, M.: 16 Gbit/s all-optical demultiplexing using four-wave mixing. Electron. Lett. 27(11), 922–924 (1991)

    Article  Google Scholar 

  27. Winter, M., Bunge, C.-A., Setti, D., Petermann, K.: A statistical treatment of cross-polarization modulation in DWDM systems. J. Lightwave Technol. 27(17), 3739–3751 (2009)

    Article  Google Scholar 

  28. Essiambre, R., Mestre, M.A., Ryf, R., Gnauck, A.H., Tkach, R.W., Chraplyvy, A.R., Sun, Y., Jiang, X., Lingle, R.: Experimental observation of inter-modal cross-phase modulation in few-mode fibers. IEEE Photonics Technol. Lett. 25(6), 535–538 (2013)

    Article  Google Scholar 

  29. Essiambre, R., Mestre, M.A., Ryf, R., Gnauck, A.H., Tkach, R.W., Chraplyvy, A.R., Sun, Y., Jiang, X., Lingle, R.: Experimental investigation of inter-modal four-wave mixing in few-mode fibers. IEEE Photonics Technol. Lett. 25(6), 539–542 (2013)

    Article  Google Scholar 

  30. Chen, W., Meng, Z.: Relative intensity noise induced by four-wave mixing in the case of two-wave transmission in an optical fiber. Opt. Laser Technol. 43(7), 1270–1273 (2011)

    Article  Google Scholar 

  31. Chen, X., Li, A., Gao, G., Shieh, W.: Study of fiber nonlinearity impact on the system capacity of two-mode fibers. In: Proceedings of Optical Fiber Communication Conference (OFC). Paper JW2A.40 (2012)

  32. Weng, Y., He, X., Wang, J., Zhu, B., Pan, Z.: “Mode and wavelength conversion based on inter-modal four-wave mixing in a highly nonlinear few-mode fiber,” In Proceedings of Signal Processing in Photonic Communications (SPPCOM). Paper SPT4D.2 (2014)

  33. Xiao, Y., Mumtaz, S., Essiambre, R.-J., Agrawal, G.P.: Effect of random linear mode coupling on intermodal four-wave mixing in few-mode fibers. In: Proceedings of Optical Fiber Communication Conference (OFC). Paper M3F.5 (2014)

  34. Garth, S.J., Sammut, R.A.: Theory of stimulated Raman scattering in two-mode optical fibers. J. Opt. Soc. Am. B 10(11), 2040–2047 (1993)

    Article  Google Scholar 

  35. Rishoj, L., Ramachandran, S., Rottwitt, K.: Intermodal Raman scattering between full vectorial modes in few moded fiber. In: Proceedings of CLEO: Science and Innovations (CLEO). Paper CTu3K.2 (2013)

  36. Niklès, M., Thévenaz, L., Robert, P.A.: Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Opt. Lett. 21(10), 758–760 (1996)

    Article  Google Scholar 

  37. Smith, J., Brown, A., DeMerchant, M., Bao, X.: Simultaneous distributed strain and temperature measurement. Appl. Opt. 38(25), 5372–5377 (1999)

    Article  Google Scholar 

  38. Bao, X., Chen, L.: Recent progress in Brillouin scattering based fiber sensors. Sensors 11(4), 4152–4187 (2011)

    Article  Google Scholar 

  39. Ramachandran, S.: Novel photonic devices in few-mode fibres. IEE Proc. Circuits Devices Syst 150(6), 473–479 (2003)

    Article  Google Scholar 

  40. Ryf, R., Sierra, A., Essiambre, R.-J., Randel, S., Gnauck, A., Bolle, C.A., Esmaeelpour, M., Winzer, P.J., Delbue, R., Pupalaikis, P., Sureka, A., Peckham, D., McCurdy, A., Lingle, R.: Mode-equalized distributed Raman amplification in 137-km few-mode fiber. In: Proceedings of European Conference and Exhibition on Optical Communication (ECOC). Paper Th.13.K.5 (2011)

  41. Rottwitt, K., Nielsen, K., Friis, S.M.M., Castaneda, M.A.U.: Challenges in higher order mode Raman amplifiers. In: Proceedings of Optical Fiber Communication Conference (OFC). Paper Tu3C.6 (2015)

  42. Ryf, R., Essiambre, R., von Hoyningen-Huene, J., Winzer, P.: Analysis of mode-dependent gain in Raman amplified few-mode fiber. In: Proceedings of Optical Fiber Communication Conference (OFC). Paper OW1D.2 (2012)

  43. Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M., Koyamada, Y.: Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol. 13(7), 1296–1302 (1995)

    Article  Google Scholar 

  44. Habel, W.R., Krebber, K.: Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sens. 1(3), 268–280 (2011)

    Article  Google Scholar 

  45. Alahbabi, M., Cho, Y.T., Newson, T.P.: Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors. Opt. Lett. 29(1), 26–28 (2004)

    Article  Google Scholar 

  46. Maughan, S.M., Kee, H.H., Newson, T.P.: Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter. Meas. Sci. Technol. 12(7), 834–842 (2001)

    Article  Google Scholar 

  47. Parker, T.R., Farhadiroushan, M., Handerek, V.A., Rogers, A.J.: Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers. Opt. Lett. 22(11), 787–789 (1997)

    Article  Google Scholar 

  48. Alahbabi, M.N., Cho, Y.T., Newson, T.P.: Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt. Lett. 30(11), 1276–1278 (2005)

    Article  Google Scholar 

  49. Liu, X., Bao, X.: Brillouin spectrum in LEAF and simultaneous temperature and strain measurement. J. Lightwave Technol. 30(8), 1053–1059 (2012)

    Article  MathSciNet  Google Scholar 

  50. Newkirk, A.V., Salceda-Delgado, G., Antonio-Lopez, J.E., Amezcua-Correa, R., Schulzgen, A.: Multicore optical fiber point sensors. In: Proceedings of Frontiers in Optics (FiO). Paper FTu4B.3 (2014)

  51. Li, A., Wang, Y., Hu, Q., Shieh, W.: Few-mode fiber based optical sensors. Opt. Express 23(3), 1139–1150 (2015)

    Article  Google Scholar 

  52. Song, K.Y., Kim, Y.H.: Characterization of stimulated Brillouin scattering in a few-mode fiber. Opt. Lett. 38(22), 4841–4844 (2013)

    Article  MathSciNet  Google Scholar 

  53. Li, S., Li, M.-J., Vodhanel, R.S.: All-optical Brillouin dynamic grating generation in few-mode optical fiber. Opt. Lett. 37(22), 4660–4662 (2012)

    Article  Google Scholar 

  54. Li, A., Hu, Q., Shieh, W.: Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis. Opt. Express 21(26), 31894–31906 (2013)

    Article  Google Scholar 

  55. Weng, Y., Ip, E., Pan, Z., Wang, T.: Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers. Opt. Express 23(7), 9024–9039 (2015)

  56. Ip, E., Li, M.-J., Wood, W., Hu, J., Yano, Y.: \(146\lambda \times 6\times 19\)-Gbaud wavelength- and mode-division multiplexed transmission over \(10\times 50\)- km spans of few-mode fiber with a gain-equalized few-mode EDFA. J. Lightwave Technol. 32(4), 1–8 (2014)

    Article  Google Scholar 

  57. Flamm, D., Naidoo, D., Schulze, C., Forbes, A., Duparre, M.: Mode analysis with a spatial light modulator as a correlation filters. Opt. Lett. 37(13), 2478–2480 (2012)

    Article  Google Scholar 

  58. Martinelli, M.: A universal compensator for polarization changes induced by birefringence on a retracing beam. Opt. Commun. 72(6), 341–344 (1989)

    Article  Google Scholar 

  59. Weng, Y., He, X., Wang, J., Pan, Z.: All-optical ultrafast wavelength and mode converter based on inter-modal nonlinear wave mixing in few-mode fibers. In: Proceedings of CLEO: Science and Innovations (CLEO). Paper STh1O.7 (2015)

  60. Kroushkov, D.I., Rademacher, G., Petermann, K.: Cross mode modulation in multimode fibers. Opt. Lett. 38(10), 1642–1644 (2013)

    Article  Google Scholar 

  61. Weng, Y., He, X., Wang, J., Pan, Z.: All-optical ultrafast wavelength and mode converter based on inter-modal four-wave mixing in few-mode fibers. Opt. Commun. 348(1), 7–12 (2015)

    Article  Google Scholar 

  62. Cherezova, T.Y., Chesnokov, S.S., Kaptsov, L.N., Kudryashov, A.V.: Doughnut-like laser beam output formation by intracavity flexible controlled mirror. Opt. Express 3(5), 180–189 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Weng, Y. & Wang, J. Investigation of nonlinear effects in few-mode fibers. Photon Netw Commun 31, 305–315 (2016). https://doi.org/10.1007/s11107-015-0521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0521-3

Keywords

Navigation