Skip to main content
Log in

A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we used the novel defective resonant cavities to design an eight-channel photonic crystal demultiplexer. We showed that by choosing appropriate values for the width of the resonant cavity, the desired wavelengths can be separated. The proposed platform has a square lattice of dielectric rods immersed in air. The value of transmission efficiency for channels was obtained in 94\(-\)99 % range. In addition, the maximum value of crosstalk and average quality factor for channels were calculated –11.2 dB and 2200, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakoda, S.: Optical Properties of Photonic Crystals. springer, Berlin (2001)

    Book  Google Scholar 

  2. Wu, Z., Xie, K., Yang, H.: Band gap properties of two dimensional photonic crystals with rhombic lattice. Optik 123, 534–536 (2012)

    Article  Google Scholar 

  3. Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik 124, 2639–2644 (2013)

    Article  Google Scholar 

  4. Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik 123, 167–170 (2011)

    Article  Google Scholar 

  5. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15(7), 075401 (2013)

    Article  Google Scholar 

  6. Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filter based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)

    Article  Google Scholar 

  7. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik 124, 5964–5967 (2013)

    Article  Google Scholar 

  8. Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division multiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)

    Article  Google Scholar 

  9. Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact low crosstalk CWDM demultiplexer using photonic crystal superprism. Opt. Express 42, 17260–17214 (2008)

    Google Scholar 

  10. Yusoff, M.H.M., Hassan, H.A., Hashim, M.R., Abd-Rahman, M.K.: Hybrid photonic crystal \(1.31/1.55\mu {\text{ m }}\) wavelength division multiplexer based on coupled line defect channels. Opt. Commun. 284, 1223–1227 (2011)

    Article  Google Scholar 

  11. Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. (2015, in press)

  12. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2*4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. (2015, in press)

  13. Ahmadi-Tame, T., Isfahani, B.M., Granpayeh, N., Javan, A.M.: Improving the performance of all optical switching based on nonlinear photonic crystal micro ring resonator. Int. J. Electron. Commun (AEU) 65, 281–287 (2011)

    Article  Google Scholar 

  14. Sharkawy, Ahmed, Shi, Shouyuan, Prather, Dennis W.: Electro-optical switching using coupled photonic crystal waveguides. Opt. Express. 10(20), 1048–1059 (2002)

    Article  Google Scholar 

  15. Danaie, M., Kaatuzian, H.: Improvement of power coupling in a nonlinear photonic crystal directional coupler switch. Photonics Nanostruct.-Fundam. Appl. 9, 70–81 (2011)

    Article  Google Scholar 

  16. Rao, W., Song, Y., Liu, M., Jin, C.: All-optical switch based on photonic crystal microcavity with multi-resonant modes. Optik 121, 1934–1936 (2010)

    Article  Google Scholar 

  17. Li, Z.J., Chen, Z.W., Li, B.J.: Optical pulse controlled all optical logic gates in SiGe/Si multimode interference. Opt. Express 13, 1033–1038 (2005)

    Article  Google Scholar 

  18. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND and NOR gates based on nonlinear photonic crystal ring resonators. Optik 125, 5701–5704 (2014)

    Article  Google Scholar 

  19. Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact low crosstalk CWDM demultiplexer using photonic crystal superprism. Opt. Express 42, 17260–17214 (2008)

    Google Scholar 

  20. Momeni, B., Huan, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., Adibi, A.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 42, 2410–2422 (2006)

    Google Scholar 

  21. Cheng, S.C., Wang, J.Z., Chen, L.W., Wang, C.C.: Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Optik 121, 1027–1032 (2011)

    Google Scholar 

  22. Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic cavity based WDM multiplexer. Photonic Nanostruct.-Fundam. Appl. 5, 164–176 (2007)

    Article  Google Scholar 

  23. Rostami, A., Nazari, F., Alipour Banaei, H.: A novel proposal for DWDM demultiplexer design using modified T P\(\backslash \)photonic crystal structure. Photonic Nanostruct.-Fundam. Appl. 8, 14–22 (2010)

    Article  Google Scholar 

  24. Rostami, A., Alipour Banei, H., Nazari, F., Bahrami, A.: An ultra-compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik 122, 1481–1485 (2011)

    Article  Google Scholar 

  25. Rakhshani, M.R., Birjandi, M.A.M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Physica E 50, 97–101 (2013)

    Article  Google Scholar 

  26. Bouamami, S., Naoum, R.: Compact WDM demultiplexer for seven channels in photonic crystal. Optik 124, 2373–2375 (2013)

    Article  Google Scholar 

  27. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications. Opt. Quant. Electron. 45, 1063–1075 (2013)

    Article  Google Scholar 

  28. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)

    Article  Google Scholar 

  29. Gedney, S.D.: Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Morgan and Claypool, Lexington (2006)

    Google Scholar 

  30. Qiu, M.: Effective index method for heterostructure-slab-wave-guide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81, 1163–1165 (2002)

    Article  Google Scholar 

  31. Bouamami, S., Naoum, R.: New version of seven wavelength demultiplexer based on microcavities in a two-dimensional photonic crystal. Optik 125, 7072–7074 (2014)

    Article  Google Scholar 

  32. Johnson, S.G., Fan, S., Mekis, A., Joannopoulos, J.D.: Multipole-cancellation mechanism for high Q cavities in the absence of a complete photonic band gap. Appl. Phys. Lett. 78, 3388–3391 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Mehdizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdizadeh, F., Soroosh, M. A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw Commun 31, 65–70 (2016). https://doi.org/10.1007/s11107-015-0531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0531-1

Keywords

Navigation