Skip to main content
Log in

Cognitive algorithm using fuzzy reasoning for software-defined optical network

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We propose a cognitive algorithm based on Fuzzy C-Means (FCM) technique for the learning and decision-making functionalities of software-defined optical networks (SDONs). SDON is a new optical network paradigm where the control plane is decoupled from the data plane, thus providing a degree of software programmability to the network. Our proposal is to add the FCM algorithm to the SDON control plane in order to achieve a better network performance, when compared with a non-cognitive control plane. In this context, we illustrate the use of the FCM algorithm for determining, in real time and autonomously, the modulation format of high-speed flexible rate transponders in accordance with the quality of transmission of optical channels. The performance of this FCM algorithm is evaluated via computational simulations for a long-haul network and compared to the case-based reasoning (CBR) algorithm, which is commonly used in optical cognitive networks. We demonstrate that FCM outperforms CBR in both fastness and error avoidance, achieving 100 % of successful classifications, being two orders of magnitude faster. Additionally, we propose a definition of cognitive optical networking and an architecture for the SDON control plane including the FCM engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berthold, J., Saleh, A.A., Blair, L., Simmons, J.M.: Optical networking: past, present, and future. J. Lightwave Technol. 26(9), 1104–1118 (2008)

    Article  Google Scholar 

  2. Bhaumik, P., Zhang, S., Chowdhury, P., Lee, S.-S., Lee, J.H., Mukherjee, B.: Software-defined optical networks (SDONs): a survey. Photonic. Netw. Commun. 28(1), 4–18 (2014)

    Article  Google Scholar 

  3. Ye, Z.L., Patel, A.N., Ji, P.N., Qiao, C.M., Wang, T.: Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms. Opt. Express 23(21), 27354–27360 (2015)

    Article  Google Scholar 

  4. Yang, H., Zhang, J., Ji, Y., Tan, Y., Lin, Y., Han, J., Lee, Y.: Performance evaluation of data center service localization based on virtual resource migration in software defined elastic optical network. Opt. Express 23(18), 23059–23071 (2015)

    Article  Google Scholar 

  5. Yang, H., Zhang, J., Ji, Y., Tian, R., Han, J., Lee, Y.: Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect. Opt. Express 23(24), 31192–31205 (2015)

    Article  Google Scholar 

  6. Zhang, X., Hou, W., Han, P., Guo, L.: Design and implementation of the routing function in the NOX controller for software-defined networks. Appl. Mech. Mater. 635, 1540–1543 (2014)

    Google Scholar 

  7. Cvijetic, N., Tanaka, A., Ji, P.N., Sethuraman, K., Murakami, S., Wang, T.: SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks. J. Lightwave Technol. 32(4), 864–870 (2014)

    Article  Google Scholar 

  8. Ye, Z., Patel, A., Ji, P., Qiao, C., Wang, T.: Virtual infrastructure embedding over software-defined flex-grid optical networks. In: IEEE Globecom Workshops, pp. 1204–1209. Atlanta, GA (2013)

  9. Huang, Y.-K. et al.: Terabit/s optical superchannel with flexible modulation. In: Optical Fiber Communication Conference and Express (OFC), OM3H.4 (2012)

  10. Ji, P.N.: Software defined optical network. In: International Conference on Optical Communications and Networks (ICOCN), pp. 1–4 (2012)

  11. Gringeri, S., Bitar, N., Xia, T.J.: Extending software defined network principles to include optical transport. IEEE Commun. Mag. 51(3), 32–40 (2013)

    Article  Google Scholar 

  12. Lia, F., Chyub, M.K., Wangc, J., Tangd, B.: Life grade recognition of rotating machinery based on supervised orthogonal linear local tangent space alignment and optimal supervised Fuzzy C-Means clustering. Measurement 73, 384–400 (2015)

    Article  Google Scholar 

  13. Xia, S.-X., Meng, F.-R., Liu, B., Zhou, Y.: A kernel clustering-based possibilistic fuzzy extreme learning machine for class imbalance learning. Cognit. Comput. 7(1), 74–85 (2015)

    Article  Google Scholar 

  14. Shatila, H.: Adaptive Radio Resource Management in Cognitive Radio Communications using Fuzzy Reasoning. Ph.D. Dissertation. Virginia Polytechnic Institute and State University (2012)

  15. Azodolmolky, S., Kokkinos, P., Angelou, M., Varvarigos, E., Tomkos, I.: DICONET NPOT: an impairments aware tool for planning and managing dynamic optical networks. J. Netw. Syst. Manag. 20(1), 116–133 (2012)

    Article  Google Scholar 

  16. Moura, U., Garrich, M., Carvalho, H., Svolenski, M., Andrade, A., Cesar, A.C., Oliveira, J., Conforti, E.: Cognitive methodology for optical amplifier gain adjustment in dynamic DWDM networks. J. Lightwave Technol. 34(8), 1971–1979 (2016)

    Article  Google Scholar 

  17. Moura, U., Garrich, M., Carvalho, H., Svolenski, M., Andrade, A., Margarido, F., Cesar, A.C., Conforti, E., Oliveira, J.: SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks. In: European Conference on Optical Communication (ECOC). Valencia, Spain (2015)

  18. Jiménez, T., et al.: A cognitive quality of transmission estimator for core optical networks. J. Lightwave Technol. 31(6), 942–951 (2013)

    Article  Google Scholar 

  19. Wei, W., Wang, C., Yu, J.: Cognitive optical networks: key drivers, enabling techniques and adaptive bandwidth services. IEEE Commun. Mag. 50(1), 106–113 (2012)

    Article  Google Scholar 

  20. Borkowski, R., et al.: Cognitive optical network testbed: EU Project CHRON. J. Opt. Commun. Netw. 7(2), A344–A355 (2015)

    Article  Google Scholar 

  21. CHRON Project Document: D3.1 Specification of the Architecture and Methods of Cognitive Decision System. CHRON D3.1 UVa v1.0 05072011. CHRON Publications. www.ict-chron.eu/Content/Deliverables_details_3_1.aspx. Accessed 27 Nov (2015)

  22. Jiménez, T. et al.: Case-based reasoning (CBR) to estimate the Q-factor in optical networks: an initial approach. In: 16th European Conference on Networks and Optical Communications (NOC), pp. 181–184. IEEE (2011)

  23. Thomas, R.W.: Cognitive Networks. Ph.D. Dissertation. Faculty of the Virginia Polytechnic Institute and State University (2007)

  24. Fortuna, C., Mohorcic, M.: Trends in the development of communication networks: cognitive networks. Comput. Netw. 53(9), 1354–1376 (2009)

    Article  Google Scholar 

  25. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  26. Almeida, R.J., Sousa, J.M.C.: Comparison of fuzzy clustering algorithms for classification. In: International Symposium on Evolving Fuzzy Systems, pp. 112–117 IEEE (2006)

  27. Fabrega, J.M., et al.: OFDM subcarrier monitoring using high resolution optical spectrum analysis. Opt. Commun. 342, 144–151 (2015)

    Article  Google Scholar 

  28. Essiambre, R.J., et al.: Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662–701 (2010)

    Article  Google Scholar 

  29. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mônica de Lacerda Rocha.

Additional information

Work partially supported by FAPESP (Grant 2013/05177-6), CNPq (Grant 482191/2013-9), and CPqD Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronco, T.R., Garrich, M., César, A.C. et al. Cognitive algorithm using fuzzy reasoning for software-defined optical network. Photon Netw Commun 32, 281–292 (2016). https://doi.org/10.1007/s11107-016-0628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0628-1

Keywords

Navigation