Skip to main content
Log in

A new binary to gray code converter based on quantum-dot cellular automata nanotechnology

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is one of the most prominent technologies in nanometer-scale with appreciable reduction of size and power consumption and high switching frequency to overcome the scaling limitations of complementary metal-oxide semiconductor. On the other hand, code converters play a key role in signal processing and efficient network designs. The researchers have focused on emerging nano-devices that can identify errors throughout information transfer. Therefore, in this research, a new QCA-based 4-bit binary to gray converter circuit employing the appropriate configuration of the XOR gate as a basic building block has been suggested. The layout has been generated using the QCADesigner simulation tool to test the functionality of the code converter. The performance results indicated that the proposed converter works properly and has optimum performance parameters such as latency, complexity, and consumed area as compared to the current schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Misra N.K., Wairya S., Singh V.K.: Optimized approach for reversible code converters using quantum dot cellular automata.: In proceedings of the 4th international conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA), pp 367–378. Springer (2015, 2016)

  2. Chakrabarty R., Mukherjee P., Acharjee R., Kumar R., Saha A., Kar N.:Reliability analysis of a noiseless code converter using quantum dot cellular automata.: In 2016 IEEE 7th annual Information Technology, Electronics And Mobile Communication Conference (IEMCON), 2016: IEEE, pp 1–8.

  3. Porod, W.: Quantum-dot devices and quantum-dot cellular automata. J. Franklin Inst. 334(5–6), 1147–1175 (1997)

    Article  Google Scholar 

  4. Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018)

    Article  Google Scholar 

  5. Patidar M. Gupta N.: Efficient design and simulation of novel exclusive-OR Gate based on nanoelectronics using quantum-dot cellular automata.: In proceeding of the second international conference on Microelectronics, Computing & Communication Systems (MCCS 2017), pp 599–614. Springer, Berlin (2019)

  6. Kummamuru, R.K., Orlov, A.O., Ramasubramaniam, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans. Electron Dev. 50(9), 1906–1913 (2003)

    Article  Google Scholar 

  7. Chaves, J.F., Ribeiro, M.A., Silva, L.M., de Assis, L.M., Torres, M.S., Neto, O.P.V.: Energy efficient QCA circuits design: Simulating and analyzing partially reversible pipelines. J. Comput. Electron. 17(1), 479–489 (2018)

    Article  Google Scholar 

  8. Mohaghegh, S.M., Sabbaghi-Nadooshan, R., Mohammadi, M.: Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput. Electr. Eng. 71, 43–59 (2018)

    Article  Google Scholar 

  9. Sherizadeh, R., Navimipour, N.J.: Designing a 2–4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik-Int. J. Light lectron Opt. 158, 477–489 (2018)

    Article  Google Scholar 

  10. Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photonic Netw. Commun. 37(1), 120–130 (2019)

    Article  Google Scholar 

  11. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24, 1–11 (2018)

    Article  Google Scholar 

  12. Mukherjee, C., Panda, S., Mukhopadhyay, A.K., Maji, B.: QCA gray code converter circuits using LTEx methodology. Int. J. Theor. Phys. 57(7), 2068–2092 (2018)

    Article  MathSciNet  Google Scholar 

  13. Heikalabad, S.R., Kamrani, H.: Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photonic Netw. Commun. 38(3), 356–377 (2019)

    Article  Google Scholar 

  14. Chakraborty R., Banerjee A., Mahato D.K., Choudhuri S., Mandal N.: Design of binary to gray code converter for error correction in communication systems using layered quantum dot cellular automata.: In 2018 2nd international conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), IEEE, pp. 1–7 (2018)

  15. Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: Systematic literature review, classification and current trends. J. Circ. Syst. Comput. 26, 1730004 (2017)

    Article  Google Scholar 

  16. Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(4), 1060–1081 (2018)

    Article  MathSciNet  Google Scholar 

  17. Abedi, D., Jaberipur, G.: Decimal full adders specially designed for quantum-dot cellular automata. IEEE Trans. Circ. Syst. II Express Br 65(1), 106–110 (2018)

    Google Scholar 

  18. S. Islam, M. Abdullah-al-Shafi, and A. N. Bahar, Implementation of binary to gray code converters in quantum dot cellular automata. J. Today’s Ideas - Tomorrow’s Technol. 3(2), 145–160 (2015)

  19. Kumar, A., Raghuwanshi, S.K.: Implementation of optical gray code converter and even parity checker using the electro-optic effect in the Mach-Zehnder interferometer. Opt. Quant. Electron. 47(7), 2117–2140 (2015)

    Article  Google Scholar 

  20. Beigh, M.R., Mustafa, M.: Design and simulation of efficient code converter circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 11(12), 2564–2569 (2014)

    Article  Google Scholar 

  21. Ahmad, F., Bhat, G.M.D., Ahmad, P.Z., Khan, H.A., Farooq, R.: design of n-bit code converter using quantum-dot cellular automata (QCA). Adv. Sci. Eng. Med. 7(5), 370–377 (2015)

    Article  Google Scholar 

  22. Mukherjee, C., Panda, S., Mukhopadhyay, A.K., Maji, B.: Towards modular binary to gray converter design using LTEx module of quantum-dot cellular automata. Microsyst. Technol. 25(5), 2011–2018 (2019)

    Article  Google Scholar 

  23. Iqbal, J., Khanday, F., Shah, N.: Efficient quantum dot cellular automata (QCA) implementation of code converters. Commun. Inf. Sci. Manag. Eng 3(10), 504 (2013)

    Google Scholar 

  24. Waje M. G and Dakhole P.: Design and simulation of new XOR gate and code converters using quantum dot cellular automata with reduced number of wire crossings. In: 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], IEEE, pp 1245–1250 (2014)

  25. Bhoi, B.K., Misra, N.K., Pradhan, M.: Novel robust design for reversible code converters and binary incrementer with quantum-dot cellular automata. In: Intelligent Computing and Information and Communication, pp. 195–205. Springer, Berlin (2018)

    Chapter  Google Scholar 

  26. Ahmad, F., Bhat, G.: Novel code converters based on quantum-dot cellular automata (QCA). Int. J. Sci. Res. 3(5), 364–371 (2012)

    Google Scholar 

  27. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  28. Singh, G., Sarin, R., Raj, B.: A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron. 15(2), 455–465 (2016)

    Article  Google Scholar 

  29. Chabi, A.M., et al.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)

    Article  Google Scholar 

  30. Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik 130, 981–989 (2017)

    Article  Google Scholar 

  31. Berarzadeh, M., Mohammadyan, S., Navi, K., Bagherzadeh, N.: A novel low power exclusive-OR via cell level-based design function in quantum cellular automata. J. Comput. Electron. 16(3), 875–882 (2017)

    Article  Google Scholar 

  32. Rao, N.G., Srikanth, P., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik 127(10), 4246–4249 (2016)

    Article  Google Scholar 

  33. Guleria N.: Binary to gray code converter implementation using QCA. In 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA)(Fall), IEEE, pp. 1–6 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-bin Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Xb., Li, Ln., Ren, Mm. et al. A new binary to gray code converter based on quantum-dot cellular automata nanotechnology. Photon Netw Commun 41, 102–108 (2021). https://doi.org/10.1007/s11107-020-00915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00915-7

Keywords

Navigation