Skip to main content
Log in

Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We propose a photonic crystal-based all-optical AND, OR, and XOR logic gates using square lattice silicon rods with air background. The design of proposed logic gates works on beam interference principle and operates efficiently by changing phase of light beams at 1550 nm wavelength. The proposed AOX logic gates are implemented with only one structure with variations in the phase of applied input signals. Simulation and verification of design are done by using finite-difference time-domain method. The design offers a contrast ratio of 33.05 dB, 10.50 dB, and 8.29 dB of proposed AND, OR, and XOR logic gates correspondingly with optimized refractive index and silicon rod radius values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sousa, J.R.R., Filho, A.F.G.F., Ferreira, A.C., Batista, G.S., Sobrinho, C.S., Bastos, A.M., Lyra, M.L., Sombra, A.S.B.: Generation of logic gates based on a photonic crystal fiber Michelson interferometer. Opt. Commun. 322, 143–149 (2014)

    Article  Google Scholar 

  2. Menezes, J.W.M., de Fraga, W.B., Ferreira, A.C., Saboia, K.D.A., Filho, A.F.G.F., Guimarães, G.F., Sousa, J.R.R., Rocha, H.H.B., Sombra, A.S.B.: Logic gates based in two and three-modes nonlinear optical fiber couplers. Opt. Quant. Elect. 39, 1191–1206 (2007)

    Article  Google Scholar 

  3. Ma, S., Chen, Z., Sun, H., Dutta, N.K.: High speed all-optical logic gates based on quantum dot semiconductor optical amplifiers. Opt. Exp. 18, 6417–6422 (2010)

    Article  Google Scholar 

  4. Soto, H., Diaz, C.A., Topomondzo, J., Erasme, D., Schares, L., Guekos, G.: All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier. IEEE. Photo. Tech. Lett. 14, 498–500 (2002)

    Article  Google Scholar 

  5. Jasim, M. A., Aldalbahi, A.: Design of XOR photonic gate using highly nonlinear fiber. Elect. 8, 1–11 (2019)

    Google Scholar 

  6. Jung, Y.J., Yu, S., Koo, s., Yu, H., Han, S., Park, N., Kim, J.H., Jhon, Y.M., Lee, S.: Reconfigurable all-optical logic AND, NAND, OR, NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In conference on lasers and electro-optics/Pacific rim 2009, 1–2, Shanghai, China (2009)

  7. Salmanpour, A., Mohammadnejad, S., Bahrami, A.: All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt. 62, 693–700 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bai, J., Wang, J., Jiang, J., Chen, X., Li, H., Qiu, Y., Qiang, Z.: Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator. Appl. Opt. 48, 6923–6927 (2009)

    Article  Google Scholar 

  9. Swarnakar, S., Rathi, S., Kumar, S.: Design of all-optical XOR gate based on photonic crystal ring resonator. J. Opt. Commun. 41, 51–56 (2017)

    Article  Google Scholar 

  10. Pashamehr, A., Zavvari, M., Alipour-Banaei, H.: All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators. Front. Opto-Elect. 9, 578–584 (2016)

    Article  Google Scholar 

  11. Younis, R.M., Areed, N.F.F., Obayya, S.S.A.: Fully integrated AND and OR logic gates. IEEE. Photo. Tech. Lett. 26, 1900–1903 (2014)

    Article  Google Scholar 

  12. Rani, P., Kalra, Y., Sinha, R.K.: Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. Opt. Commun. 374, 148–155 (2016)

    Article  Google Scholar 

  13. Abudlnabi, S.H., Abbas, M.N.: All-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides at optical communications band. J. Nanophoton. 13, 1–19 (2019)

    Article  Google Scholar 

  14. Kumar, S., Singh, L., Chen, N.K.: Design of All-optical universal gates using plasmonics mach-zehnder interferometer for WDM Applications. Plasmonics. 13, 1277–1286 (2017)

    Article  Google Scholar 

  15. Choudhary, K., Kumar, S.: Design of an optical OR gate using Mach-Zehnder interferometers. J. Opt. Commun. 39, 1–5 (2016)

    Google Scholar 

  16. Kumar, S., Singh, G., Bisht, A., Sharma, S., Amphawan, A.: Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach-Zehnder interferometers. Appl. Opt. 54, 8479–8484 (2015)

    Article  Google Scholar 

  17. Ishizaka, Y., Kawaguchi, Y., Saitoh, K., Koshiba, M.: Design of optical XOR, XNOR, NAND, and OR logic gates based on multi-mode interference waveguides for binary-phase-shift-keyed signal. J. Lightwave Tech. 29, 2836–2846 (2011)

    Article  Google Scholar 

  18. Liu, W., Yang, D., Shen, G., Tian, H., Ji, Y.: Design of ultra-compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt. Laser Tech. 50, 55–64 (2013)

    Article  Google Scholar 

  19. Tang, C., Dou, X., Lin, Y., Yin, H., Wu, B., Zhao, Q.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Comm. 316, 49–55 (2014)

    Article  Google Scholar 

  20. Shaik, E.H., Rangaswamy, N.: Design of photonic crystal based all-optical AND gate using T-shaped waveguide. J. Modern. Opt. 63, 941–949 (2015)

    Article  Google Scholar 

  21. Rani, P., Kalra, Y., Sinha, R.K.: Realization of AND gate in Y-shaped photonic crystal waveguide. Opt. Commun. 298, 227–231 (2013)

    Article  Google Scholar 

  22. Swarnakar, S., Kumar, S., Sharma, S., Singh, L.: Design of XOR/AND gate using 2-D photonic crystal principle. Photonics, Proc. SPIE 10130, Next-Generation Optical Communication: Components, Sub-Systems, and Systems VI, 10130, 1–11 (2017)

  23. Rani, P., Kalra, Y., Sinha, R.K.: Design of all-optical logic gates in photonic crystal waveguides. Optik. 126, 950–955 (2015)

    Article  Google Scholar 

  24. Bhadel, K., Mehra, R.: Design and Simulation of 2-D photonic crystal based all-optical AND logic gate. 2014 Intl. Conf. on Compu. Intelli. and Commun. Netw. 973–977 (2014)

  25. Zhang, Y., Zhang, Y., Li, B.: Optical switches and logic gates based on photonic crystals. Opt. Exp. 15, 9287–9292 (2007)

    Article  Google Scholar 

  26. Swarnakar, S., Kumar, S., Sharma, S.: Performance analysis of all-optical full adder based on two-dimensional photonic crystals. J. Comp. Elect. 17, 1124–1134 (2018)

    Article  Google Scholar 

  27. Achary, S.N.: Novel all optic logic gates using 2D photonic crystal structure. J. Mat. Sci. Eng. 4, 2–4 (2015)

    Google Scholar 

  28. Fu, Y., Hu, X., Gong, Q.: Silicon photonic crystal all-optical logic gates. Phy. Lett. A. 377, 329–333 (2013)

    Article  Google Scholar 

  29. Swarnakar, S., Kumar, S., Sharma, S.: Design of all-optical half-subtractor circuit device using 2-D principle of photonic crystal waveguides. J. Opt. Commun. 40, 195–203 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Science and Engineering Research Board, India [Grant Number: TAR/2018/000051].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Swarnakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, D.G.S., Swarnakar, S., Palacharla, V. et al. Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photon Netw Commun 41, 109–118 (2021). https://doi.org/10.1007/s11107-020-00916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00916-6

Keywords

Navigation