Skip to main content
Log in

Analysis of new all optical polarization-encoded Dual SOA-based ternary NOT & XOR gate with simulation

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Design and performance of all optical ternary NOT & XOR gate using the Dual semiconductor optical amplifier (SOA)-based technology is investigated. The basic principal behind the operation of these logic gates is nonlinear cross-polarization modulation (XPolM) effect in SOA. Optical NOT gate is universal logic gate, and optical XOR gates are very useful in designing higher order optical devices like flip-flops, parity checker and generator circuits, etc. The Q-value of the design is greater than 50 dB maintaining high operational speed (~ 100Gbit/s) ensures negligible bit error rate. Numerical simulation using MATLAB ensures CR values more than 55 dB and ER values more than 50 dB. These high values ensure practical feasibility of the proposed devices. The large relative eye opening(> 94%) ensures clear transmissions of the information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Connelly, M.J.: Semiconductor Optical Amplifier. Kluwer Academic publishers, New York (2002)

    Google Scholar 

  2. Chattopadhyay, T., Roy, J.N.: Polarization-encoded all-optical quaternary multiplexer and demultiplexer–a proposal. Optik 120(17), 941–946 (2009)

    Article  Google Scholar 

  3. Chattopadhyay, T., Roy, J.N.: All-optical ordinary quaternary inverter (QNOT) using binary NOT gate. Optik-Int. J. Light Electron Opt. 124(8), 667–674 (2013)

    Article  Google Scholar 

  4. Mondal, S., Mondal, D., Mondal, M.K., Gorai, S.K.: A scheme for the development of a trinary logic unit (TLU) using polarization based optical switches. J. Comput. Electron. (2018). https://doi.org/10.1007/s10825-019-01310-w

    Article  Google Scholar 

  5. Raja, A., Mukherjee, K., Roy, J.N., Maji, K.: Analysis of new all-optical polarization-encoded quaternary Galois field adder processing soliton pulses. J. Opt. 49(1), 83–93 (2020)

    Article  Google Scholar 

  6. Wang, Y., Liu, X., Tian, Q., Xin, X.: All optical flip flops and random access memory cells using the nonlinear polarization rotation effect of low polarization dependent Semiconductor Optical Amplifier. Opt. Commun. 410, 846–854 (2018)

    Article  Google Scholar 

  7. Raja, A., Mukherjee, K., Roy, J.N., Maji, K.: Analysis of polarization encoded optical switch implementing cross polarization modulation effect in semiconductor optical amplifier. Probe 5(1), 1–5 (2019)

    Google Scholar 

  8. Dorren, H.J.S., Lenstra, D., Liu, Y., Hill, M.T., Khoe, G.D.: Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE J. Quant. Electron. 39, 141–148 (2003)

    Article  Google Scholar 

  9. Maji, K., Mukherjee, K., Raja, A.: Frequency encoded all optical tri-state logic gates NOT and NAND using semiconductor optical amplifier based interferometric switches. Nanosci. Nanotechnol.-Asia 10, 369 (2020). https://doi.org/10.2174/2210681209666190620110027

    Article  Google Scholar 

  10. Zhang, S., Liu, Y., Zhang, Q., Li, H., Liu, Y.: All optical sampling based on nonlinear polarization rotation in semiconductor optical amplifiers. J. Optoelectron. Biomed. Mater. 1(4), 383–388 (2009)

    Google Scholar 

  11. Mukherjee, K.: Semiconductor optical amplifier based frequency encoded logic gates exploiting nonlinear polarization rotation only. J. Circuits, Syst. Comput. 23(09), 1450130 (2014)

    Article  Google Scholar 

  12. Wu, W., Champbell, S., Zhou, S., Yeh, P.: Polarization encoded optical logic operation in photorefractive media. Opt. Lett. 18(20), 1742–1744 (1993)

    Article  Google Scholar 

  13. Connelley, M.J.: Modelling of nonlinear polarization rotation in tensile strained semiconductor optical amplifiers using Muller matrices and carrier induced refractive index change calculations. Optic. Commn. 308, 70–73 (2018)

    Article  Google Scholar 

  14. Maji, K., Mukherjee, K., Raja, A.: Frequency encoded all optical universal logic gates using terahertz optical asymmetric demultiplexer. Int. J. Photon. Opt. Technol. 4(3), 1–7 (2017)

    Google Scholar 

  15. Mukherjee, K., Majhi, K., Raja, A.: A novel approach to all-optical universal soliton logic gate NAND utilizing reflective semiconductor optical amplifiers. J. Opt. (2020). https://doi.org/10.1007/s12596-020-00645-z

    Article  Google Scholar 

  16. Kotb, A., Zoiros, K.E.: Soliton all-optical logic AND gate with semiconductor optical amplifier-assisted Mach-Zehnder interferometer. Optical Engineering 55(8), 087109 (2016)

    Article  Google Scholar 

  17. Karmakar, S., Chandy, J.A., Jain F.C.: Design of ternary logic combinational circuits based on quantum dot gate FETs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(5), 793–806 (2013)

  18. Chattopadhyay, T.: All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study. Appl. Opt. 49, 5226–5235 (2010)

    Article  Google Scholar 

  19. Matera, F., Settembre, M.: Role of Q-factor and a time jitter in the performance evaluation of optically amplified transmission systems. IEEE J. Sel. Top. Quant. Electron. 6, 308–316 (2000)

    Article  Google Scholar 

  20. Guo, L.Q., Connelley, M.J.: ‘All optical AND gate with improved extinction ratio using signal induced non linearities in a bulk semiconductor optical amplifier. Opt. Expr. 14, 2938–2943 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, A., Mukherjee, K. & Roy, J.N. Analysis of new all optical polarization-encoded Dual SOA-based ternary NOT & XOR gate with simulation. Photon Netw Commun 41, 242–251 (2021). https://doi.org/10.1007/s11107-021-00932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00932-0

Keywords

Navigation