Skip to main content
Log in

Designing a three-level full-adder based on nano-scale quantum dot cellular automata

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Some of the vital problems around the conventional CMOS technology are leakage-power consumption, physical-scalability limits, and short-channel effects. These deficiencies have led to many studies about nano-scale designs. Quantum dot cellular automata (QCA) is a potential answer in nanotechnology. Scholars have considered the four-dot squared cell as the main factor in the QCA. Also, a full-adder is a fundamental unit in every digital system. However, the importance of cell and area consumption limitation in circuit designing has been completely ignored in most of the related studies. Therefore, in this paper, we have offered a one-bit multi-layer full-adder cell. The practical accuracy of the proposed circuits has been assessed using QCADesigner. According to the obtained results and the design, the presented design has efficient cell usage against all the prior designs regarding cell counts and area occupation, leading to around 7% improvement in cell number than the common full-adder design. The simulation outcomes have also shown that the introduced design has excellent efficiency regarding cell and area aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bolhassani, A., Haghparast, M.: Optimized designs of reversible arithmetic logic unit. Turk. J. Electr. Eng. Comput. Sci. 25(2), 1137–1146 (2017)

    Google Scholar 

  2. Seyedi, S., Darbandi, M., and Navimipour, N. J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)

  3. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)

    Google Scholar 

  4. Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., Gösele, U.: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2(1), 85–88 (2006)

    Google Scholar 

  5. Abu El-Seoud, A., El-Banna, M., Hakim, M.: On modelling and characterization of single electron transistor. Int. J. Electron. 94(6), 573–585 (2007)

    Google Scholar 

  6. Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)

    Google Scholar 

  7. Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)

    Google Scholar 

  8. Seyedi, S., Ghanbari, A., Navimipour, N.J.: New design of a 4-bit ripple carry adder on a nano-scale quantum-dot cellular automata. Mosc. Univ. Phys. Bull. 74(5), 494–501 (2019)

    Google Scholar 

  9. Mosleh, M.: A novel design of multiplexer based on nano-scale quantum-dot cellular automata. Concurrency Computat. Pract. Exper. 31(13), e5070 (2019)

    Google Scholar 

  10. Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13(9), 2127–2147 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Andrecut, M., Ali, M.: Entanglement dynamics in quantum cellular automata. Phys. Lett. A 326(5), 328–332 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Hasani, B., Navimipour, N. J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 993–999 (2021)

  13. Banik, D., Rahaman, H.: Quantum-dot cellular automata latches for reversible logic using wave clocking scheme. IETE J. Res. (2020). https://doi.org/10.1080/03772063.2020.1819886

    Article  Google Scholar 

  14. Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1(26), 176–183 (2007)

    Google Scholar 

  15. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24, 1295–1305 (2018)

  16. Sarvaghad-Moghaddam, M., Orouji, A.A.: New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata. Eur. Phys. J. D 73(6), 125 (2019)

    Google Scholar 

  17. Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019)

    Google Scholar 

  18. Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)

    Google Scholar 

  19. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Google Scholar 

  20. Sandhu, A., Gupta, S.: Performance evaluation of an efficient five-input majority gate design in QCA nanotechnology. Iran. J. Sci. Techno. Trans. Electr. Eng. (2019). https://doi.org/10.1007/s40998-019-00296-2

    Article  Google Scholar 

  21. Das, J.C., De, D.: Reversible priority encoder design and implementation using quantum-dot cellular automata. IET Quantum Commun. 1(2), 72–78 (2020)

    Google Scholar 

  22. Ilanchezhian, P., Parvathi, R.: Nanotechnology based effective design approach for code converter circuits using QCA. Int. J. Comput. Appl. 69(8) (2013)

  23. Latha, K., Maharshi, M.N.: Design of adders using qca. Int. J. Adv. Eng. Technol. 6(4), 1750 (2013)

    Google Scholar 

  24. Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23, 4155–4168 (2017)

  25. Nejad, M.Y., Mosleh, M.: A review on QCA multiplexer designs. Majlesi J. Electr. Eng. 11(2), 69–79 (2017)

  26. Rao, N.G., Srikanth, P., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-Int. J. Light Electron Optics 127(10), 4246–4249 (2016)

    Google Scholar 

  27. Sen, B., Mukherjee, R., Mohit, K., Sikdar, B.K.: Design of reliable universal QCA logic in the presence of cell deposition defect. Int. J. Electron. 104(8), 1285–1297 (2017)

    Google Scholar 

  28. Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018)

    Google Scholar 

  29. Ahmad, F., Bhat, G.: Novel code converters based on quantum-dot cellular automata (QCA). Int. J. Sci. Res. 3(5), 364–371 (2012)

    Google Scholar 

  30. Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr (VLSI) Syst. 19(9), 1535–1548 (2010)

    Google Scholar 

  31. Heikalabad, S.R., Kamrani, H.: Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photonic Netw. Commun. 38(3), 356–377 (2019)

    Google Scholar 

  32. Molahosseini, A.S., Navi, K., Dadkhah, C., Kavehei, O., Timarchi, S.: Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. IEEE Trans. Circuits Syst. I Regul. Pap. 57(4), 823–835 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Peskin, U., Abu-Hilu, M., Speiser, S.: Approaches to molecular devices based on controlled intramolecular electronic energy and electron transfer. Electron transfer rates through flexible molecular bridges by a time-dependent super exchange model. Opt. Mater. 24(1), 23–29 (2003)

    Google Scholar 

  34. Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57, 1060–1081 (2018)

    Article  MATH  Google Scholar 

  35. Seyedi, S., Navimipour, N.J.: Designing a new 4:2 compressor using an efficient multi-layer full-adder based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 60, 2613–2626 (2021)

    Article  MATH  Google Scholar 

  36. Navi, K., et al.: A novel low-power full-adder cell with new technique in designing logical gates based on static CMOS inverter. Microelectron. J. 40(10), 1441–1448 (2009)

    Google Scholar 

  37. Zhang, Y., Lv, H., Du, H., Huang, C., Liu, S., Xie, G.: Modular design of QCA carry flow adders and multiplier with reduced wire crossing and number of logic gates. Int. J. Circ. Theor. Appl. 44(7), 1351–1366 (2015)

    Google Scholar 

  38. Ghosh, B., Singh, C., Salimath, A.K.: A novel approach of full adder and arithmetic logic unit design in quantum dot cellular automata. J. Low Pow. Electron. 9(4), 452–457 (2013)

    Google Scholar 

  39. Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38(8), 1046–1062 (2014)

    MATH  Google Scholar 

  40. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Google Scholar 

  41. Wang, W., Walus, K., and Jullien, G. A.: “Quantum-dot cellular automata adders,” in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 2003, 1, 461–464: IEEE

  42. Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Pow. Electron. 10(2), 259–271 (2014)

    Google Scholar 

  43. Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-Int. J. Light Electron Optics 158, 243–256 (2017)

    Google Scholar 

  44. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)

    Google Scholar 

  45. Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)

    Google Scholar 

  46. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)

    Google Scholar 

  47. Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech 2, 978–981 (2011)

    Google Scholar 

  48. Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)

    Google Scholar 

  49. Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012)

    Google Scholar 

  50. Kumari, A., Bhanja, S.: Landauer clocking for magnetic cellular automata MCA arrays. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(4), 714–717 (2011)

    Google Scholar 

  51. Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240 (2006)

    Google Scholar 

  52. Sayedsalehi, S., Moaiyeri, M.H., Navi, K.: Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8(9), 1769–1775 (2011)

    Google Scholar 

  53. Navi, K., Roohi, A., Sayedsalehi, S.: Designing reconfigurable quantum-dot cellular automata logic circuits. J. Comput. Theor. Nanosci. 10(5), 1137–1146 (2013)

    Google Scholar 

  54. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    Google Scholar 

  55. Sarmadi, S., Sayedsalehi, S., Fartash, M., Angizi, S.: A structured ultra-dense QCA one-bit full-adder cell. Quant. Matt. 5(1), 118–123 (2016)

    Google Scholar 

  56. Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158, 243–256 (2018)

    MATH  Google Scholar 

  57. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Google Scholar 

  58. Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)

    Google Scholar 

  59. Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74(5), 1994–2005 (2018)

    Google Scholar 

  60. Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik 127(20), 8576–8591 (2016)

    Google Scholar 

  61. Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)

    Google Scholar 

  62. Cho, H., Swartzlander, E.E., Jr.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. Int. J. High Perform. Syst. Archit. 5(4), 202–208 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedi, S., Navimipour, N.J. Designing a three-level full-adder based on nano-scale quantum dot cellular automata. Photon Netw Commun 42, 184–193 (2021). https://doi.org/10.1007/s11107-021-00949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00949-5

Keywords

Navigation