Skip to main content
Log in

A tunable nonlinear plasmonic multiplexer/demultiplexer device based on nanoscale ring resonators

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The development of devices for communication networks to transmit information has become an active and growing field of research. Multiplexer/demultiplexer (M/D) is one of the basic devices in this field. In this paper, an M/D design is introduced based on the surface plasmon resonance in optical ring resonators. The number of inputs and outputs of M/D is 3 × 1 and 1 × 3, respectively. All parameters of the structure, including radius and width of ring resonators and waveguides, have been evaluated to obtain the optimal response. Also, we used the nonlinear gold property to expand the range of M/D performance and simulated the results for intensities less than 100 MW/cm2. Selectivity in the number of inputs and outputs, controllability using several parameters, all optically, selectivity in operation frequency, nanoscale size, reconfigurability, and integrated capability are the features of this design. In our simulation, we consider transmission and reflection of light in each port based on the finite difference time domain for evaluation of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zaytsev, K.I., et al.: “Terahertz photonic crystal waveguides based on sapphire shaped crystals.” IEEE Trans. Tera. Sci. Tech. 6(4), 576–582 (2016)

    Article  MathSciNet  Google Scholar 

  2. Fu, M., et al.: Efficient terahertz modulator based on photoexcited graphene. Opt. Mater. 66, 381–385 (2017)

    Article  Google Scholar 

  3. Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)

    Article  Google Scholar 

  4. Kersting, R., Strasser, G., Unterrainer, K.: Terahertz phase modulator. Nat. Photonics 36(13), 1156–1158 (2000)

    Google Scholar 

  5. Chen, H.-T., Padilla, W., Cich, M., Azad, A.K., Averitt, R.D., Taylor, A.: A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 148–151 (2009)

    Article  Google Scholar 

  6. Chen, C.-Y., Pan, C.-L., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P.: Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88(10), 101107 (2006)

    Article  Google Scholar 

  7. Hashemi, M.R.M., Yang, S.-H., Wang, T., Sepúlveda, N., Jarrahi, M.: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci. Rep. 6, 35439 (2016)

    Article  Google Scholar 

  8. Reichel, K.S., Mendis, R., Mittleman, D.M.: A broadband terahertz waveguide T-junction variable power splitter. Sci. Rep. 6, 28925 (2016)

    Article  Google Scholar 

  9. Chen, C.-Y., Hsieh, C.-F., Lin, Y.-F., Pan, R.-P., Pan, C.-L.: Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter. Opt. Express 12(12), 2625–2630 (2004)

    Article  Google Scholar 

  10. Krumbholz, N., et al.: Omnidirectional terahertz mirrors: a key element for future terahertz communication systems. Appl. Phys. Lett. 88(20), 202905 (2006)

    Article  Google Scholar 

  11. Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018)

    Article  Google Scholar 

  12. Hosseini, A., Massoud, Y.: A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 14(23), 11318–11323 (2006)

    Article  Google Scholar 

  13. Wang, G., Lu, H., Liu, X., Gong, Y.: Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23(44), 444009 (2012)

    Article  Google Scholar 

  14. Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)

    Article  Google Scholar 

  15. Baqir, M., Farmani, A., Fatima, T., Raza, M., Shaukat, S., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018)

    Article  Google Scholar 

  16. Clark, A.W., Glidle, A., Cumming, D.R., Cooper, J.M.: Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 131(48), 17615–17619 (2009)

    Article  Google Scholar 

  17. Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017)

    Article  Google Scholar 

  18. Liu, D., Wang, J., Zhang, F., Pan, Y., Lu, J., Ni, X.: Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators. Sensors 17(3), 585 (2017)

    Article  Google Scholar 

  19. Jeong, H.-H., et al.: Arrays of plasmonic nanoparticle dimers with defined nanogap spacers. ACS Nano 13(10), 11453–11459 (2019)

    Article  Google Scholar 

  20. Farmani, A., Mir, A.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. 31(8), 643–646 (2019)

    Article  Google Scholar 

  21. Zhou, F., Du, W.: Ultrafast all-optical plasmonic graphene modulator. Appl. Opt. 57(23), 6645–6650 (2018)

    Article  Google Scholar 

  22. Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E Low-dimens. Syst. Nanostruct. 116, 113730 (2020)

    Article  Google Scholar 

  23. Bai, N., et al.: Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012)

    Article  Google Scholar 

  24. Xie, Y., Fu, S., Zhang, M., Tang, M., Shum, P., Liu, D.: Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission. Opt. Commun. 306, 185–189 (2013)

    Article  Google Scholar 

  25. Mohammadi, B., Soroosh, M., Kovsarian, A., Kavian, Y.S.: Improving the transmission efficiency in eight-channel all optical demultiplexers. Photon Netw. Commun. 38(1), 115–120 (2019)

    Article  Google Scholar 

  26. Shaari, S., Adnan, A.J. M.: Photonic crystal multiplexer/demultiplexer device for optical communications. In: Bishnu Pal (ed.) Frontiers in Guided Wave Optics and Optoelectronics. InTech (2010). Available from: http://www.intechopen.com/books/frontiers-in-guided-wave-optics-andoptoelectronics/photonic-crystal-multiplexer-demultiplexer-device-for-optical-communications

  27. Moreolo, M.S., Silvestri, F., Armellino, M., Hingerl, K., Cincotti, G.: Optimization of a 2D photonic crystal add/drop multiplexer based on contra-directional coupling. Photon. Nanostruct-Fundam. Appl. 4(3), 155–160 (2006)

    Article  Google Scholar 

  28. Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon Netw. Commun. 34(2), 248–257 (2017)

    Article  Google Scholar 

  29. Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor fourchannel demultiplexer based on photonic crystal ring resonators. Opt. Appl. XLVI(4) (2016)

  30. Zayats, A.V., Smolyaninov, I.I., Maradudin, A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)

    Article  Google Scholar 

  31. Gramotnev, D.K., Bozhevolnyi, S.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83 (2010)

    Article  Google Scholar 

  32. Novotny, L., Van Hulst, N.: Antennas for light. Nat. Photonics 5(2), 83–90 (2011)

    Article  Google Scholar 

  33. Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5(9), 523–530 (2011)

    Article  Google Scholar 

  34. Bana, X., Pang, X., Li, X., Huc, B., Guoa, Y., Zheng, H.: A nonlinear plasmonic waveguide based all-optical bidirectional switching. Opt. Commun. 406(1), 124–127 (2017)

    Google Scholar 

  35. Lin, X.-S., Huang, X.-G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008)

    Article  Google Scholar 

  36. Peng, X., Li, H., Wu, C., Cao, G., Liu, Z.: Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013)

    Article  Google Scholar 

  37. Ding, X., et al.: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136(44), 15684–15693 (2014)

    Article  Google Scholar 

  38. Tao, J., Wang, Q., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753 (2011)

    Article  Google Scholar 

  39. Haus, H.A., Lai, Y.: Theory of cascaded quarter wave shifted distributed feedback resonators. IEEE J. Quantum Electron. 28(1), 205–213 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansuri, M., Mir, A. & Farmani, A. A tunable nonlinear plasmonic multiplexer/demultiplexer device based on nanoscale ring resonators. Photon Netw Commun 42, 209–218 (2021). https://doi.org/10.1007/s11107-021-00953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00953-9

Keywords

Navigation