Skip to main content
Log in

Inequalities for the spectral radius of non-negative functions

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let (X, μ) be a σ-finite measure space and M(X × X)+ a cone of all equivalence classes of (almost everywhere equal) non-negative measurable functions on a product measure space X × X. Using Luxemburg-Gribanov theorem we define a product * on M(X × X)+. Given a function seminorm h : M(X × X)+ → [0, ∞], we introduce the spectral radius r h (f) of fM(X × X)+ with respect to h and *. We give several examples. In particular, r h (f) provides a generalization and unification of the spectral radius and its max version, the maximum cycle geometric mean, of a non-negative matrix.

We generalize some known results for the Hadamard weighted geometric mean of positive kernel operators and apply them to obtain some inequalities concerning the generalized spectral radius and its max version. We also give a new description of the maximum cycle geometric mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Aliprantis, O. Burkinshaw, Positive operators, Academic Press, Orlando (1985).

  2. M. Akian, S. Gaubert, R. D. Nussbaum, The Collatz–Wielandt theorem for order-preserving homogeneous maps on cones (2007, preprint).

  3. F. L. Baccelli, G. Cohen, G.-J. Olsder, J.-P.Quadrat, Synchronization and Linearity, John Wiley, Chichester, New York (1992).

  4. R. B. Bapat, A max version of the Perron–Frobenius theorem, Linear Algebra Appl., 275–276 (1998), 3–18.

  5. R. B. Bapat, T. E. S. Raghavan, Nonnegative Matrices and Applications, Encyclopedia of Mathematics and its Applications 64, Cambridge University Press, Cambridge (1997).

  6. C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Inc., Orlando (1988).

  7. M. A. Berger, Wang Y., Bounded semigroups of matrices, Linear Algebra Appl., 166 (1992), 21–27.

    Google Scholar 

  8. P. Butkovič, Max-algebra: the linear algebra of combinatorics?, Linear Algebra Appl., 367 (2003), 313–335.

  9. R. A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Economics and Mathematical Systems, Vol. 166, Springer, Berlin (1979).

  10. R. A. Cuninghame-Green, Minimax algebra and applications, Advances in Imaging and Electron Physics, Vol. 90, pp. 1–121, Academic Press, New York (1995).

  11. R. Drnovšek, A. Peperko, Inequalities for the Hadamard weighted geometric mean of positive kernel operators on Banach function spaces, Positivity, 10 (2006), 613–626.

  12. L. Elsner, P. van den Driessche, On the power method in max algebra, Linear Algebra Appl., 302–303 (1999), 17–32.

  13. L. Elsner, D. Hershkowitz, A. Pinkus, Functional inequalities for spectral radii of nonnegative matrices, Linear Algebra Appl., 129 (1990), 103–130.

    Google Scholar 

  14. L. Elsner, C.R. Johnson, J.A. Dias Da Silva, The Perron root of a weighted geometric mean of nonnegative matrices, Linear Multilinear Algebra, 24 (1989), 1–13.

  15. G.M. Engel, H. Schneider, Diagonal similarity and equivalence for matrices over groups with 0, Czechoslovak. Math. J., 25 (1975), 389–403.

    Google Scholar 

  16. S. Friedland, Limit eigenvalues of nonnegative matrices, Linear Algebra Appl., 74 (1986), 173–178.

  17. S. Gaubert, Théorie des systemes linéaires dans les dioïdes, These, Ecole des Mines de Paris (1992).

  18. M. Haase, Convexity inequalities for positive operators, Positivity 11 (2007), 57–68.

    Google Scholar 

  19. R. A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge (1999).

  20. A. G. Kusraev, Orthosymmetric bilinear operators, Institute of Applied Mathematics and Informatics VSC RAS, Vladikavkaz, pp. 1–34 (Preprint 1, 2007).

  21. Y. Y. Lur, On the asymptotic stability of nonnegative matrices in max algebra, Linear Algebra Appl., 407 (2005), 149–161.

  22. Y. Y. Lur, A max version of the generalized spectral radius theorem, Linear Algebra Appl., 418 (2006), 336–346.

  23. J. Mallet-Paret, R. D. Nussbaum, Eigenvalues for a Class of Homogeneous Cone Maps Arising from Max-Plus Operators, Discrete Continuous Dyn Syst, Vol. 8, num 3, (2002), 519–562.

  24. P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin (1991).

  25. R. D. Nussbaum, Convexity and log convexity for the spectral radius, Linear Algebra Appl., 73 (1986), 59–122.

  26. G. Pedersen, Analysis Now, Springer, New York (1989).

  27. A. Peperko, On the max version of the generalized spectral radius theorem, Linear Algebra Appl., (2007). doi:10.1016/j.laa.2007.08.041.

  28. M. Väth, Ideal Spaces, Lecture Notes in Mathematics, Vol. 1664, Springer-Verlag, Berlin (1997).

  29. A. C. Zaanen, Riesz Spaces II, North Holland, Amsterdam (1983).

  30. U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structures, Ann. Discrete Math., Vol 10, North Holland, Amsterdam (1981).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljoša Peperko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peperko, A. Inequalities for the spectral radius of non-negative functions. Positivity 13, 255–272 (2009). https://doi.org/10.1007/s11117-008-2188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-008-2188-9

Mathematics Subject Classification (2000)

Keywords

Navigation