Skip to main content
Log in

Positive matrix semigroups with binary diagonals

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We show that a semigroup of positive matrices (all entries greater than or equal to zero) with binary diagonals (diagonal entries either 0 or 1) is either decomposable (all matrices in the semigroup have a common zero entry) or is similar, via a positive diagonal matrix, to a binary semigroup (all entries 0 or 1). In the case where the idempotents of minimal rank in \({\mathcal{S}}\) satisfy a “diagonal disjointness” condition, we obtain additional structural information. In the case where the semigroup is not necessarily positive but has binary diagonals we show that either the semigroup is reducible or the minimal rank ideal is a binary semigroup. We also give generalizations of these results to operators acting on the Hilbert space of square-summable sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman M., Plemmons R.: Nonnegative Matrices in Mathematical Sciences. Academic Press, New York (1979)

    MATH  Google Scholar 

  2. Semigroups Working Group at LAW ’08, Kranjska Gora, Semigroups of operators with nonnegative diagonals. Lin. Alg. Appl. (2010 to appear)

  3. Bernik J., Mastnak M., Radjavi H.: Realizing irreducible semigroups and real algebras of compact operators. J. Math. Anal. Appl. 348(2), 692–707 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernik, J., Mastnak, M., Radjavi, H.: Positivity and matrix semigroups. Lin. Alg. Appl. (2010 to appear)

  5. Burnside W.: On the condition of reducibility of any group of linear substitutions. Proc. Lond. Math. Soc. 3, 430–434 (1905)

    Article  MATH  Google Scholar 

  6. Choi M.D., Nordgren E.A., Radjavi H., Rosenthal P., Zhong Y.: Triangularizing semigroups of quasinilpotent operators with nonnegative entries. Indiana Univ. Math. J. 42, 15–25 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drnovsek R.: Common invariant subspaces for collections of operators. Intgral Equ. Oper. Theory 39, 253–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gessesse H., Popov A., Radjavi H., Spinu E., Tcaciuc A., Troitsky V.: Bounded indecomposable semigroups of non-negative matrices. Positivity 14(3), 383–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jahandideh M.T.: On the ideal-triangularizability of positive operators on Banach lattices. Proc. Am. Math. Soc. 125, 2661–2670 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kaplansky I.: The Engel-Kolchin theorem revisited. In: Bass, H., Cassidy, P.J., Kovaciks, J. (eds) Contributions to Algebra, pp. 233–237. Academic Press, New York (1977)

    Google Scholar 

  11. Radjavi H., Rosenthal P.: Simultaneous Triangularization, Universitext. Springer, Berlin (2000)

    Book  Google Scholar 

  12. Radjavi H., Rosenthal P.: Limitations on the size of semigroups of matrices. Semigroup Forum 76, 25–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ringrose J.R.: Super-diagonal forms for compact linear operators. Proc. Lond. Math. Soc. 12(3), 367–384 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhong Y.: Functional positivity and invariant subspaces of operators. Houst. J. Math. 19, 239–262 (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. MacDonald.

Additional information

G. MacDonald and H. Radjavi acknowledge the support of NSERC Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livshits, L., MacDonald, G. & Radjavi, H. Positive matrix semigroups with binary diagonals. Positivity 15, 411–440 (2011). https://doi.org/10.1007/s11117-010-0092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-010-0092-6

Keywords

Mathematics Subject Classification (2000)

Navigation