Skip to main content
Log in

Convolution-Type Derivatives, Hitting-Times of Subordinators and Time-Changed C 0-semigroups

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

This paper takes under consideration subordinators and their inverse processes (hitting-times). The governing equations of such processes are presented by means of convolution-type integro-differential operators similar to the fractional derivatives. Furthermore the concept of time-changed C 0-semigroup is discussed in case the time-change is performed by means of the hitting-time of a subordinator. Such time-change gives rise to bounded linear operators governed by integro-differential time-operators. Because these operators are non-local the presence of long-range dependence is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achar, B.N.N., Lorenzo, C.F., Hartley, T.T.: The Caputo fractional derivative: initialization issues relative to fractional differential equations. Advances in Fractional Calculus, pp. 27–42. Springer, Dordrecht (2007)

    Google Scholar 

  2. Baeumer, B., Meerschaert, M.M.: Stochastic solutions for fractional Cauchy problems. Fractional Calc. Applies Anal. 4(4), 481–500 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Benson, D., Schumer, R., Meerschaert, M., Wheatcraft, S.: Fractional dispersion, Lévy motions, and the MADE tracer tests. Transport Porous Media 42, 211–240 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bernstein, S.: Sur les fonctions absolument monotones (french). Acta Math. 52, 1–66 (1929)

    Article  Google Scholar 

  5. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Bertoin, J.: Subordinators: examples and appications. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1997), Lectures Notes in Mathematics, vol. 1717, pp. 1–91. Springer, Berlin (1999)

    Google Scholar 

  7. Bochner, S.: Diffusion equation and stochastic processes. Proc. Nat. Acad. Sci. USA 35, 368–370 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bochner, S.: Harmonic analysis and the theory of probability. University of California Press, Berkeley (1955)

    MATH  Google Scholar 

  9. D’Ovidio, M.: From Sturm-Liouville problems to fractional and anomalous diffusions. Stoch. Process. Appl. 122, 3513–3544 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, Graduate Texts in Mathematics (2000)

  11. Feller, W.: An introduction to probability theory and its applications, vol. II. Wiley, New York (1966)

    MATH  Google Scholar 

  12. Itô, K.: On stochastic processes. I. (Infinitely divisible laws of probability). Jpn. J. Math. 18, 261–301 (1942)

    MATH  Google Scholar 

  13. Jacob, N.: Pseudo Differential Operators & Markov Processes: Fourier analysis and semigroups. vol. 1, Imperial College Press, Fourier analysis and semigroups (2001)

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V. (2006)

  15. Kochubei, A.N.: General fractional calculus, evolution equations and renewal processes. Integr. Equ. Oper. Theory 71, 583–600 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Leonenko, N., Meerschaert, M.M., Sikorskii, A.: Correlation structure of fractional Pearson diffusions. Computers & Mathematics with Applications. (In press) (2013)

  17. Lieb, E.H.: The stability of matter: from atoms to stars. Bull. Amer. Math. Soc. 22, 1–49 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dynam. 29, 57–98 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models, p xx+34. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  20. Meerschaert, M.M., Nane, E., Vellaisamy, P.: Fractional Cauchy problems on bounded domains. Ann. Probab. 37(3), 979–1007 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Meerschaert, M.M., Scheffler, H.P.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41, 623–638 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Meerschaert, M.M., Scheffler, H.P.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118(9), 1606–1633 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. Walter de Gruyter, Vol. 43 of De Gruyter Studies in Mathematics, Berlin/Boston (2012)

  24. Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Natur. Phenom. 8(2), 1–16 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Montroll, E., Weiss, G.H.: Random walk on lattices. II. J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  Google Scholar 

  26. Orsingher, orsptrf E., Beghin, L.: Time-fractional telegraph equations and telegraph process with Brownian time. Probab. Theory Relat. Fields 128, 141–160 (2003)

    MathSciNet  Google Scholar 

  27. Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 37(1), 206–249 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Phillips, R.S.: On the generation of semigroups of linear operators. Pacific J. Math. Pacific J. Math. 2, 343–369 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007)

    Article  MATH  Google Scholar 

  30. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Samorodnitsky, G.: Long range dependence. Found. Trends Stoch. Syst. 1(2), 163–257 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Samorodnitsky, G.: Stable non-Gaussian Random Processes. Chapman and Hall, New York (1944)

    Google Scholar 

  33. Sato, K.: Lévy processes and infinitely divisible distributions. Cambridge University Press (1999)

  34. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein functions: theory and applications. Walter de Gruyter GmbH & Company KG, Vol. 37 of De Gruyter Studies in Mathematics Series (2010)

  35. Song, R., Vondraček, Z.: Potential theory of subordinate Brownian motion. Potential Analysis of Stable Processes and its Extensions. In: Graczyk, P., Stos, A. (eds.) Lecture Notes in Mathematics, vol. 1980, pp. 87–176 (2009)

  36. Veillette, M., Taqqu, M.S.: Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes. Stat. Probab. Lett. 80, 697–705 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zaslavsky, G.: Fractional kinetic equation for Hamiltonian chaos. Chaotic advection, tracer dynamics and turbulent dispersion. Phys. D 76, 110–122 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zolotarev, V.: One-dimensional stable distributions. Translations of Mathematical Monographs 65, American Mathematical Society, Providence, RI (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Toaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toaldo, B. Convolution-Type Derivatives, Hitting-Times of Subordinators and Time-Changed C 0-semigroups. Potential Anal 42, 115–140 (2015). https://doi.org/10.1007/s11118-014-9426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-014-9426-5

Mathematics Subject Classifications 2010

Navigation