Skip to main content

Advertisement

Log in

Combined use of hyperspectral VNIR reflectance spectroscopy and kriging to predict soil variables spatially

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Hyperspectral visible near infrared reflectance spectroscopy (VNIRRS) and geostatistical methods are considered for precision soil mapping. This study evaluated whether VNIR or geostatistics, or their combined use, could provide efficient approaches for assessing the soil spatially and associated reductions in sample size using soil samples from a 32 ha area (800 × 400 m) in northern Turkey. Soil variables considered were CaCO3, organic matter, clay, sand and silt contents, pH, electrical conductivity, cation exchange capacity (CEC) and exchangeable cations (Ca, Mg, Na and K). Cross-validation was used to compare the two approaches using all grid data (n = 512), systematic selections of 13, 25 and 50% of the data and random selections of 13 and 25% for calibration; the remaining data were used for validation. Partial least squares regression (PLSR) analysis was used for calibrating soil properties from first derivative VNIR reflectance spectra (VNIRRS), whereas ordinary-, co- and regression-kriging were used for spatial prediction. The VNIRRS-PLSR method provided better prediction results than ordinary kriging for soil organic matter, clay and sand contents, (R 2 values of 0.56–0.73, 0.79–0.85, 0.65–0.79, respectively) and smaller root mean squared errors of prediction (values of 2.7–4.1, 37.4–43, 46.9–61, respectively). The EC, pH, Na, K and silt content were predicted poorly by both approaches because either the variables showed little variation or the data were not spatially correlated. Overall, the prediction accuracy of VNIRRS-PLSR was not affected by sample size as much as it was for ordinary kriging. Cokriging (COK) and regression kriging (RK) were applied to a combination of values predicted by VNIR reflectance spectroscopy and measured in the laboratory to improve the accuracy of prediction of the soil properties. The results showed that both COK and RK with VNIRRS estimates improved the predictions of soil variables compared to VNIRRS and OK. The combined use of VNIRRS and multivariate geostatistics results in better spatial prediction of soil properties and enables a reduction in sampling and laboratory analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ben-Dor, E., & Banin, A. (1995). Near infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59, 364–372.

    Article  CAS  Google Scholar 

  • Bishop, T. F. A., & McBratney, A. B. (2001). A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma, 103, 149–160.

    Article  Google Scholar 

  • Bourennane, H., Dere, Ch., Lamy, I., Cornu, S., Baize, D., van Oort, F., et al. (2006). Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography. Science of the Total Environment, 361, 229–248.

    Article  PubMed  CAS  Google Scholar 

  • Bouyoucos, G. J. (1926). Estimation of the colloidal material in soils. Science, 64, 362.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., & Reinsch, T. G. (2006). Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132, 273–290.

    Article  CAS  Google Scholar 

  • Burgess, T. M., Webster, R., & McBratney, A. B. (1981). Optimal interpolation and isarithmic mapping of soil properties. IV sampling strategy. Journal of Soil Science, 32, 643–659.

    Article  Google Scholar 

  • Chang, C. W., Laird, D. A., Mausbach, M. J., Maurice, J., & Hurburgh, J. R. (2001). Near-infrared reflectance spectroscopy—Principal components regression analyses of soil properties. Soil Science Society of America Journal, 65, 480–490.

    Article  CAS  Google Scholar 

  • Chodak, M., Ludwig, B., Khanna, P., & Beese, F. (2002). Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands. Journal of Plant Nutrition and Soil Science, 165, 27–33.

    Article  CAS  Google Scholar 

  • Cozzolino, D., & Morón, A. (2003). The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. Journal of Agricultural Science, 140, 65–71.

    Article  CAS  Google Scholar 

  • Dalal, R. C., & Henry, R. J. (1986). Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Science Society of America Journal, 50, 120–123.

    Article  CAS  Google Scholar 

  • Dunn, B. W., Beecher, H. G., Batten, G. D., & Ciavarella, S. (2002). The potential of near-infrared reflectance spectroscopy for soil analysis—A case study from the Riverine Plain of south-eastern Australia. Australian Journal of Experiment Agriculture, 42, 607–614.

    Article  Google Scholar 

  • Ersahin, S. (2003). Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Science Society of America Journal, 67, 1848–1855.

    Article  CAS  Google Scholar 

  • Ge, Y., Thomasson, J. A., Morgan, C. L., & Searcy, S. W. (2007). VNIR diffuse reflectance spectroscopy for agricultural soil property determination based on regression-kriging. Transactions of the ASABE, 50, 1081–1092.

    CAS  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. Computers and Geosciences, 33, 1301–1315.

    Article  Google Scholar 

  • Hengl, T., Heuvelink, G. B. M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120, 75–93.

    Article  Google Scholar 

  • Idowu, O. J., van Es, H. M., Abawi, G. S., Wolfe, D. W., Ball, J. I., Gugino, B. K., et al. (2008). Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods. Plant and Soil, 307, 243–253.

    Article  CAS  Google Scholar 

  • Islam, K., Singh, B., Schwenke, G., & McBratney, A. B. (2004). Evaluation of vertosol soil fertility using ultra-violet, visible and near-infrared reflectance spectroscopy. In B. Singh (Ed.), SuperSoil 2004: 3rd Australian New Zealand soil conference. Symposium 4: Emerging soil analytical techniques in the laboratory and the field. Sydney, Australia: University of Sydney.

  • Janzen, H. H. (1993). Soluble salts. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 161–166). Boca Raton, FL: CRC Press Inc.

    Google Scholar 

  • Kacar, B. (1994). Soil and plant analysis III—Soil analysis. No. 3. Ankara, Turkey: Faculty of Agriculture, University of Ankara.

    Google Scholar 

  • Kerry, R., & Oliver, M. A. (2007). Determining the effect of asymmetric data on the variogram. I. Underlying asymmetry. Computers and Geosciences, 33, 1212–1232.

    Article  Google Scholar 

  • Kravchenko, A. N. (2003). Influence of spatial structure on accuracy of interpolation methods. Soil Science Society America Journal, 67, 1564–1571.

    Article  CAS  Google Scholar 

  • Kravchenko, A. N., & Robertsen, G. P. (2007). Can topographical and yield data substantially improve total soil carbon mapping by regression kriging ? Agronomy Journal, 99, 12–17.

    Article  Google Scholar 

  • Laslett, G. M. (1994). Kriging and splines: An emprical comparison of their predictive performances in some applications. Journal of American Statistical Association, 89, 391–400.

    Article  Google Scholar 

  • Ludwig, B., Khanna, P. K., Bauhus, P., & Hopmans, P. (2002). Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. Forest Ecology and Management, 171, 121–132.

    Article  Google Scholar 

  • Martens, H., & Naes, T. (1989). Multivariate calibration. Chichester, UK: Wiley.

    Google Scholar 

  • Matheron, G. (1965). Les variables régionalisées et leur estimation: une application de la théorie de fonctions aléatoires aux sciences de la nature. Paris: Masson et Cie.

    Google Scholar 

  • McBratney, A. B., & Webster, R. (1983). Coregionalization and multiple sampling strategy. Journal of Soil Science, 34, 249–263.

    Article  Google Scholar 

  • McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (Part II) (pp. 199–223). Agronomy Monography No: 9. Madison, WI: ASA SSSA.

  • Mueller, T. G., Pierce, F. J., Schabenberger, O., & Warncke, D. D. (2001). Map quality for site specific fertility management. Soil Science Society America Journal, 65, 1547–1558.

    Article  CAS  Google Scholar 

  • Mueller, T. G., Pusuluri, N. B., Mathias, K. K., Cornelius, P. L., Barnhisel, R. I., & Shearer, S. A. (2004). Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Science Society America Journal, 68, 2042–2047.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (Part II) (pp. 570–571). Agronomy Monography No: 9. Madison, WI: ASA SSSA.

  • Odeh, I. O. A., & McBratney, A. B. (1995). Further results on prediction of soil properties from terrain attributes: Heterotopic cokriging and regression-kriging. Geoderma, 67, 215–226.

    Article  Google Scholar 

  • Odeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1994). Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma, 63, 197–214.

    Article  Google Scholar 

  • Odeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (2004). Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma, 63, 197–215.

    Article  Google Scholar 

  • R Development Core Team. (2006). R; A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

  • Reeves, J., McCarty, G., & Mimmo, T. (2002). The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environmental Pollution, 116, 277–284.

    Article  Google Scholar 

  • Reeves, J. B., & Van Kessel, J. S. (1999). Investigations into near-infrared analysis as an alternative to traditional procedures in manure N and C mineralization studies. Journal Near Infrared Spectroscopy, 7, 197–212.

    Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least square procedure. Analytical Chemistry, 36, 1627–1639.

    Article  CAS  Google Scholar 

  • Shepherd, K. D., & Walsh, M. G. (2002). Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society America Journal, 66, 988–998.

    Article  CAS  Google Scholar 

  • Sullivan, D. G., Shaw, J. N., & Rickman, D. (2005). IKONOS imagery to estimate surface soil property in two Alabama physiographies. Soil Science America Journal, 69, 1789–1798.

    Article  CAS  Google Scholar 

  • Takata, Y., Funakawa, S., Akshalov, K., Ishida, N., & Kosaki, T. (2007). Spatial prediction of soil organic matter in northern Kazakhstan based on topographic and vegetation information. Soil Science and Plant Nutrition, 53, 289–299.

    Article  CAS  Google Scholar 

  • Tarr, A. B., Kenneth, J. M., & Dixon, P. M. (2005). Spectral reflectance as a covariate for estimating pasture productivity and composition. Crop Science Society of America, 45, 996–1003.

    Google Scholar 

  • Tsai, F., & Philpot, W. (1998). Derivative analysis of hyperspectral data. Remote Sensing Environment, 66, 41–51.

    Article  Google Scholar 

  • Udelhoven, T., Emmerling, C., & Jarmer, T. (2003). Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial-least square regression: A feasibility study. Plant and Soil, 251, 319–329.

    Article  CAS  Google Scholar 

  • Viscarra Rossel, R. A., & McBratney, A. B. (1998). Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water content. Geoderma, 85, 19–39.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59–75.

    Article  CAS  Google Scholar 

  • Voltz, M., & Webster, R. (1990). A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. Journal of Soil Science, 41, 473–490.

    Article  Google Scholar 

  • Warrick, A. W., Myers, D. E., & Nielsen, D. R. (1986). Geostatistical methods applied to soil science. In A. Klute (Ed.), Methods of soil analysis (Part I) (pp. 53–82). Agronomy Monography No: 9. Madison, WI: ASA SSSA.

  • Webster, R., & Oliver, M. A. (1992). Sampling adequately to estimate variograms of soil properties. Journal of Soil Science, 43, 177–192.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Chichester, England: Wiley.

    Book  Google Scholar 

  • Wu, Y. Z., Chen, J., Ji, J. F., Tian, Q. J., & Wu, X. M. (2005). Feasibility of reflectance spectroscopy for the assessment of soil mercury contamination. Environmental Science and Technology, 39, 873–878.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Norvell, W. A., & Welch, R. M. (2006). Kriging on highly skewed data for DTPA-extractable soil Zn with auxiliary information for pH and organic carbon. Geoderma, 134, 187–199.

    Article  CAS  Google Scholar 

  • Yıldız, H. (1997). Detailed soil survey and mapping of Tokat fruit production stations soils. (In Turkish, with English abstract.) MSc Thesis, Gaziosmanpasa University, Tokat, Turkey.

  • Zhang, R., Warrick, A. W., & Myers, D. E. (1992). Improvement of the prediction of soil particle-size fractions using spectral properties. Geoderma, 52, 223–234.

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored in part by USDA-CSREES Special Grant on Computational Agriculture and Scientific Research Administration of Gaziosmanpasa University, Tokat, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Volkan Bilgili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilgili, A.V., Akbas, F. & van Es, H.M. Combined use of hyperspectral VNIR reflectance spectroscopy and kriging to predict soil variables spatially. Precision Agric 12, 395–420 (2011). https://doi.org/10.1007/s11119-010-9173-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9173-6

Keywords

Navigation