Skip to main content

Advertisement

Log in

Factors influencing the adoption of precision agricultural technologies: a review for policy implications

  • Review Paper
  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Increasing pressure for food security and sustainability as well as a need to halt environmental degradation has focused attention on increasing the efficient use of farm resources. One answer to aspects of that problem is the use of precision agricultural technologies (PATs). To facilitate their adoption, initiatives have been fostered in developed countries since the 1980s. Despite a low rate of adoption elsewhere, similar efforts in recent years have been initiated in developing countries. Given this, understanding those underlying factors that influence the adoption of PATs is vital. It is timely to review these factors and to draw policy implications from that review for future actions. This review, based on studies investigating the limited adoption of PATs in ‘experienced’ countries, extrapolates their findings to explain why farmers have or have not adopted PATs. At the same time, this review summarizes the key insights for more effectively targeting ‘new’ followers: e.g. it provides some answers to the question of who is more likely to adopt PATs. Additionally, the review points to the limitations of current research in the area and suggests a robust economic model or multidisciplinary approach be adopted for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Details on sample size have not been provided by Roberts et al. (2002) for their applications of the Logit method.

References

  • Adhikari, A., Mishra, A. K., & Chintawar, S. (2009, January 31-February 3). Adoption of technology and its impact on profitability of young and beginning farmers: A quantile regression approach. Paper presented at the the Southern Agricultural Economics Association Annual Meeting, Georgia, USA

  • Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture, 48(3), 256–271.

    Article  Google Scholar 

  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

    Article  Google Scholar 

  • Alvarez, J., & Nuthall, P. (2006). Adoption of computer based information systems: the case of dairy farmers in Canterbury, NZ, and Florida, Uruguay. Computers and Electronics in Agriculture, 50(1), 48–60.

    Article  Google Scholar 

  • Arnó, J., Rosell, J. R., Blanco, R., Ramos, M. C., & Martínez-Casasnovas, J. A. (2012). Spatial variability in grape yield and quality influenced by soil and crop nutrition characteristics. Precision Agriculture, 13(3), 393–410.

    Article  Google Scholar 

  • Batte, M. T., Jones, E., & Schnitkey, G. D. (1990). Computer use by Ohio commercial farmers. American Journal of Agricultural Economics, 72(4), 935–945.

    Article  Google Scholar 

  • Biermachera, J. T., Brorsenb, B. W., Epplinb, F. M., Soliec, J. B., & Raun, W. R. (2009). The economic potential of precision nitrogen application with wheat based on plant sensing. Agricultural Economics, 40, 397–407.

    Article  Google Scholar 

  • Bramley, R. G. V., & Hamilton, R. P. (2007). Terroir and precision viticulture: are they compatible? Journal international des Sciences de la Vigne et du Vin, 41(1), 1–8.

    Google Scholar 

  • Calkins, P., & Thant, P. P. (2011). Sustainable agro-forestry in Myanmar: from intentions to behavior. Environment, Development and Sustainability, 13(2), 439–461.

    Article  Google Scholar 

  • Carlson, J. E., Schnabel, B., Beus, C. E., & Dilman, D. E. (1994). Changes in soil conservation attitudes and behaviors of farmers in the Palouse and Camas prairies: 1976–1990. Journal of Soil and Water Conservation, 49(5), 493–500.

    Google Scholar 

  • Carr, P., Carlson, G., Jacobson, J., Nielson, G., & Skogley, E. (1991). Farming soils, not fields: a strategy for increasing fertilizer profitability. Journal of Production Agriculture, 4(1), 57–61.

    Google Scholar 

  • Chen, W., Bell, R. W., Brennan, R. F., Bowden, J. W., Dobermann, A., Rengel, Z., et al. (2009). Key crop nutrient management issues in the Western Australia grains industry: a review. Australian Journal of Soil Research, 47, 1–18.

    Article  Google Scholar 

  • Chen, Y. C., Duann, L. S., & Hu, W. P. (2005). The finite-sample properties of maximum likelihood estimators in multinomial probit models. Journal of the Eastern Asia Society for Transportation Studies, 6, 1667–1681.

    Google Scholar 

  • Daberkow, S. G., & McBride, W. D. (1998). Socioeconomic profiles of early adopters of precision agriculture technologies. Agribusiness, 16(2), 151–168.

    Google Scholar 

  • Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture, 4(2), 163–177.

    Article  Google Scholar 

  • D’Emden, F. H., Llewellyn, R. S., & Burton, M. P. (2006). Adoption of conservation tillage in Australian cropping regions: An application of duration analysis. Technological Forecasting and Social Change, 73(6), 630–647.

    Article  Google Scholar 

  • Diederen, P., van Meijl, H., Wolters, A., & Bijak, K. (2003). Innovation adoption in agriculture: Innovators, early adopters and laggards. Cahiers D’Economie Et Sociologie Rurales, 67, 30–50.

    Google Scholar 

  • Edwards-Jones, G. (2006). Modelling farmer decision-making: Concepts, progress and challenges. Animal Science, 82(6), 783–790.

    Article  Google Scholar 

  • Feder, G. (1982). Adoption of interrelated agricultural innovations: Complementarity and the impacts of risk, scale, and credit. American Journal of Agricultural Economics, 64(1), 94–101.

    Article  Google Scholar 

  • Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural innovations in developing countries: A survey. Economic Development and Cultural Change, 33(2), 255–298.

    Article  Google Scholar 

  • Feder, G., & Umali, D. L. (1993). The adoption of agricultural innovations: A review. Technological Forecasting and Social Change, 43(3–4), 215–239.

    Article  Google Scholar 

  • Fernandez-Cornejo, J., Daberkow, S., & McBride, W. D. (2002). Decomposing the size effect on the adoption of innovations: Agribiotechnology and precision agriculture. AgBioForum, 4(2), 124–136.

    Google Scholar 

  • Fleming, A., & Vanclay, F. (2010). Farmer responses to climate change and sustainable agriculture: A review. Agronomy for Sustainable Development, 30(1), 11–19.

    Article  Google Scholar 

  • Fountas, S., Blackmore, S., Ess, D., Hawkins, S., Blumhoff, G., Lowenberg-Deboer, J., et al. (2005). Farmer experience with precision agriculture in Denmark and the US eastern corn belt. Precision Agriculture, 6, 121–141.

    Article  Google Scholar 

  • Fuglie, K., & Bosch, D. (1995). Implications of soil nitrogen testing. American Journal of Agricultural Economics, 77, 891–900.

    Article  Google Scholar 

  • Hair, J. F. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Heisel, T., Christensen, S., & Walter, A. (1996). Weed managing model for patch spraying in cereal. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Proceedings of the 3rd International Conference on Precision Agriculture (pp. 999–1007). Wisconsin, USA: ASA- CSSA- SSSA.

    Google Scholar 

  • Hill, R. C., Griffiths, W. E., & Lim, G. C. (2008). Principles of Econometrics (3rd ed.) New York: Wiley.

  • Hite, D., Hudson, D., & Intarapapong, W. (2002). Willingness to pay for water quality improvements: The case of precision application technology. Journal of Agricultural and Resource Economics, 27(2), 433–449.

    Google Scholar 

  • Hudson, D., & Hite, D. (2003). Producer willingness to pay for precision application technology: Implications for government and the technology industry. Canadian Journal of Agricultural Economics, 51, 39–53.

    Article  Google Scholar 

  • Isgin, T., Bilgic, A., Forster, D. L., & Batte, M. (2008). Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Computers and Electronics in Agriculture, 62, 231–242.

    Article  Google Scholar 

  • Jochinke, D. C., Noonon, B. J., Wachsmann, N. C., & Norton, R. M. (2007). The adoption of precision agriculture in an Australian broadacre cropping system—Challenges and opportunities. Field Crops Research, 104, 68–76.

    Article  Google Scholar 

  • Khanna, M. (2001). Sequential adoption of site-specific technologies and its implications for Nitrogen productivity: A double selectivity model. American Journal of Agricultural Economics, 83(1), 35–51.

    Article  Google Scholar 

  • Khanna, M., Epouhe, O. E., & Hornbaker, R. (1999). Site-specific crop management: adoption patterns and incentives. Review of Agricultural Economics, 21(2), 455–472.

    Google Scholar 

  • Khanna, M., & Zilberman, D. (1997). Incentives, precision technology and environmental protection. Ecological Economics, 23, 25–43.

    Article  Google Scholar 

  • Kitchen, N. R. (2008). Emerging technologies for real-time and integrated agriculture decisions. Computers and Electronics in Agriculture, 61(1), 1–3.

    Article  Google Scholar 

  • Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy, 32(1), 25–48.

    Article  Google Scholar 

  • Kotler, P. (2003). Marketing Management (11th ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.

    Article  Google Scholar 

  • Lamba, P., Filson, G., & Adekunle, B. (2009). Factors affecting the adoption of best management practices in southern Ontario. Environmentalist, 29(1), 64–77.

    Article  Google Scholar 

  • Larson, J. A., Roberts, R. K., English, B. C., Larkin, S. L., Marra, M. C., Martin, S. W., et al. (2008). Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production. Precision Agriculture, 9(4), 195–208.

    Article  Google Scholar 

  • Lehman, H., Clark, E. A., & Weise, S. F. (1993). Clarifying the definition of sustainable agriculture. Journal of Agricultural and Environmental Ethics, 6(2), 127–143.

    Article  Google Scholar 

  • Lowenberg-DeBoer, J., & Aghib, A. (1999). Average returns and risk characteristics of site specific P and K management: Eastern corn belt on-farm trail results. Journal of Production Agriculture, 12(2), 276–282.

    Google Scholar 

  • Lynne, G., Shonkwiler, J., & Rola, L. (1988). Attitudes and farmer conservation behavior. American Journal of Agricultural Economics, 70(1), 12–19.

    Article  Google Scholar 

  • Maohua, W. (2001). Possible adoption of precision agriculture for developing countries at the threshold of the new millennium. Computers and Electronics in Agriculture, 30, 45–50.

    Article  Google Scholar 

  • Marra, M. C., & Ssali, B.C. (1990). The role of human capital in the adoption of conservation tillage: The case of Aroostook County, Maine, potato farmers. Experiment Station Bulletin 831, Department of Agricultural and Resource Economics, University of Maine, Bangor.

  • Marra, M. C., Rejesus, R. M., Roberts, R. K., English, B. C., Larson, J. A., Larkin, S. L., et al. (2010). Estimating the demand and willingness-to-pay for cotton yield monitors. Precision Agriculture, 11(3), 215–238.

    Article  Google Scholar 

  • Mercer, D. E. (2004). Adoption of agroforestry innovations in the tropics: A review. Agroforestry Systems, 61(1), 311–328.

    Article  Google Scholar 

  • Mondal, P., Basu, M., Bhadoria, P. B. S., Emam, A. A., Salih, M. H., Adegbite, A. A., et al. (2011). Critical review of precision agriculture technologies and its scope of adoption in India. American Journal of Experimental Agriculture, 1(3), 49–68.

    Google Scholar 

  • Mondal, P., & Tewari, V. K. (2007). Present status of precision farming: A review. International Journal of Agricultural Research, 2(1), 1–10.

    Article  Google Scholar 

  • Nelson, F. D. (1981). A test for misspecification in the censored normal model. Econometrica, 49(5), 1317–1329.

    Article  Google Scholar 

  • Oriade, C., King, R., Forcella, R., & Gunsolus, J. (1996). A bioeconomic analysis of site-specific management for weed control. Review of Agricultural Economics, 18, 523–535.

    Google Scholar 

  • Palaniswami, C., Gopalasundaram, P., & Bhaskaran, A. (2011). Application of GPS and GIS in sugarcane agriculture. Sugar Tech, 13(4), 1–6.

    Article  Google Scholar 

  • Pattanayak, S., Mercer, D. E., Sills, E., & Yang, J. (2003). Taking stock of agroforestry adoption studies. Agroforestry Systems, 57(3), 173–186.

    Article  Google Scholar 

  • Reichardt, M., & Jürgens, C. (2009). Adoption and future perspective of precision farming in Germany: results of several surveys among different agricultural target groups. Precision Agriculture, 10(1), 73–94.

    Article  Google Scholar 

  • Rezaei-Moghaddam, K., & Salehi, S. (2010). Agricultural specialists’ intention toward precision agriculture technologies: integrating innovation characteristics to technology acceptance model. African Journal of Agricultural Research, 5(11), 1191–1199.

    Google Scholar 

  • Roberts, R. K., English, B. C., & Larson, J. A. (2002). Factors affecting the location of precision farming technology adoption in Tennessee. Journal of Extension, 40(1), Article 1RIB3. http://www.joe.org/joe/2002february/rb3.php

  • Roberts, R. K., English, B. C., Larson, J. A., Cochran, R. L., Goodman, W. R., Larkin, S. L., et al. (2004). Adoption of site-specific information and variable-rate technologies in cotton precision farming. Journal of Agricultural and Applied Economics, 36(1), 143–158.

    Google Scholar 

  • Robertson, M., Isbister, B., Maling, I., Oliver, Y., Wong, M., Adams, M., et al. (2007). Opportunities and constraints for managing within-field spatial variability in Western Australian grain production. Field Crops Research, 104(1–3), 60–67.

    Article  Google Scholar 

  • Robertson, M. J., Llewellyn, R. S., Mandel, R., Lawes, R., Bramley, R. G. V., Swift, L., et al. (2012). Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects. Precision Agriculture, 13(2), 181–199.

    Google Scholar 

  • Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). New York: Free Press.

    Google Scholar 

  • Schmitzberger, I., Wrbka, T., Steurer, B., Aschenbrenner, G., Peterseil, J., & Zechmeister, H. G. (2005). How farming styles influence biodiversity maintenance in Austrian agricultural landscapes. Agriculture, Ecosystems & Environment, 108(3), 274–290.

    Article  Google Scholar 

  • Schnitkey, G., & Hopkins, J. (1997). Precision agriculture technologies: do they have environmental benefits? Ohio’s Challenge, 10, 16–19.

    Google Scholar 

  • Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment, 88, 157–169.

    Article  Google Scholar 

  • Shortle, J. S., & Miranowski, J. A. (1986). Effects of risk perceptions and other characteristics of farmers and farm operations on the adoption of conservation tillage practices. Applied Agricultural Research, 1(2), 85–90.

    Google Scholar 

  • Silva, C. B., de Moraes, M. A. F. D., & Molin, J. P. (2011). Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil. Precision Agriculture, 12(1), 67–81.

    Article  Google Scholar 

  • Silva, C. B., Do Vale, S. M. L. R., Pinto, F. A. C., Muller, C. A. S., & Moura, A. D. (2007). The economic feasibility of precision agriculture in Mato Grosso do Sul State, Brazil: A case study. Precision Agriculture, 8(6), 255–265.

    Article  Google Scholar 

  • Swinton, S. M., & Lowenberg-DeBoer, J. (1998). Evaluating the profitability of site-specific farming. Journal of Production Agriculture, 11(4), 439–446.

    Google Scholar 

  • Swinton, S. M., & Lowenberg-DeBoer, J. (2001). Global adoption of precision agriculture technologies: Who, when and why? In: G. Grenier and S. Blackmore (Ed.), Proceedings of the 3rd European Conference on Precision Agriculture (p. 557–562). Agro Montpellier, Montpellier, France

  • Sylvester-Bradley, R., Lord, E., Sparkes, D. L., Scott, R. K., Wiltshire, J. J. J., & Orson, J. (1999). An analysis of the potential of precision farming in Northern Europe. Soil Use and Management, 15(1), 1–8.

    Article  Google Scholar 

  • Takacs-Gyorgy, K. (2008). Economic aspects of chemical reduction on farming: Role of precision farming—Will the production structure change? Cereal Research Communications, 36, 19–22.

    Google Scholar 

  • Tardaguila, J., Baluja, J., Arpon, L., Balda, P., & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12(5), 762–773.

    Article  Google Scholar 

  • Walton, J. C., Lambert, D. M., Roberts, R. K., Larson, J. A., English, B. C., Larkin, S. L., et al. (2008). Adoption and abandonment of precision soil sampling in cotton production. Journal of Agricultural and Resource Economics, 33(3), 428–448.

    Google Scholar 

  • Timmermann, C., Gerhards, R., Krohmann, P., Sokefeld, M., & Kuhbauch, W. The economical and ecological impact of the site-specific weed control. In: G. Grenier and S. Blackmore (Ed.), Proceedings of the 3rd European conference on precision agriculture, (p. 563–568).Agro Montpellier, Montpellier, France

Download references

Acknowledgments

We thank two anonymous reviewers and Jim Schepers (Co-Editor) for their constructive comments concerning ways to improve the quality of an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Sheng Tey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tey, Y.S., Brindal, M. Factors influencing the adoption of precision agricultural technologies: a review for policy implications. Precision Agric 13, 713–730 (2012). https://doi.org/10.1007/s11119-012-9273-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-012-9273-6

Keywords

Navigation