Skip to main content
Log in

In-season biomass estimation of oilseed rape (Brassica napus L.) using fully polarimetric SAR imagery

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Accurate estimation of crop biophysical and biochemical parameters during crop growing seasons is essential for improving site-specific management and yield estimation. The potential ability of fully polarimetric synthetic aperture radar (SAR) data in estimating above-ground biomass of oilseed rape was investigated in this study. The temporal profile of different scattering intensity and polarimetric features during the entire growing season was identified with ground measurements. A polarimetric feature, relying on the polarimetric decomposition method, was put forward to estimate the biomass of oilseed rape. Validation results revealed great potential with a determination coefficient (R2) of 0.85, root mean squared error (RMSE) of 41.6 g/m2, and relative error (RE) of 28.5% for dry biomass, and an R2 of 0.76, RMSE of 527.4 g/m2 and RE of 28.6% for fresh biomass. Moreover, the use of full polarization SAR data was compared with single and dual polarization SAR data. The results suggest that when full polarization SAR data is available, a simpler model, higher saturation point and better accuracy can be achieved in biomass estimation of oilseed rape, which highlights the importance and value of polarimetry information in quantitative crop monitoring. This study provides guidelines for in-season monitoring of crop growth parameters with SAR data, which further improves crop monitoring capability in adverse weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahamed, T., Tian, L., Zhang, Y., & Ting, K. C. (2011). A review of remote sensing methods for biomass feedstock production. Biomass and Bioenergy, 35(7), 2455–2469.

    Article  Google Scholar 

  • Ali, I., Schuster, C., Zebisch, M., Forster, M., Kleinschmit, B., & Notarnicola, C. (2013). First results of monitoring nature conservation sites in alpine region by using very high resolution (VHR) X-band SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2265–2274.

    Article  Google Scholar 

  • Attema, E. P. W., & Ulaby, F. T. (1978). Vegetation modeled as a water cloud. Radio Science, 13(2), 357–364.

    Article  Google Scholar 

  • Baghdadi, N., Boyer, N., Todoroff, P., Elhajj, M., & Bégué, A. (2009). Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on reunion island. Remote Sensing of Environment, 113(8), 1724–1738.

    Article  Google Scholar 

  • Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing, 6(11), 10395–10412.

    Article  Google Scholar 

  • Bériaux, E., Lucau-Danila, C., Auquiere, E., & Defourny, P. (2013). Multiyear independent validation of the water cloud model for retrieving maize leaf area index from SAR time series. International Journal of Remote Sensing, 34(12), 4156–4181.

    Article  Google Scholar 

  • Bériaux, E., Waldner, F., Collienne, F., Bogaert, P., & Defourny, P. (2015). Maize leaf area index retrieval from synthetic quad pol SAR time series using the water cloud model. Remote Sensing, 7(12), 16204–16225.

    Article  Google Scholar 

  • Cable, J. W., Kovacs, J. M., Jiao, X., & Shang, J. (2014). Agricultural monitoring in northeastern Ontario, Canada, using multi-temporal polarimetric RADARSAT-2 data. Remote Sensing, 6(3), 2343–2371.

    Article  Google Scholar 

  • Cloude, S. (2009). Polarisation: applications in remote sensing. Oxford, UK: Oxford University Press.

    Book  Google Scholar 

  • Cloude, S., & Pottier, E. (1997). An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 68–78.

    Article  Google Scholar 

  • FAO. (2013). FAOSTAT Database. Food and Agriculture Organization of the United Nations, Rome. Retrieved July 31, 2018, from http://faostat.fao.org.

  • Fontanelli, G., Paloscia, S., Zribi, M., & Chahbi, A. (2013). Sensitivity analysis of X-band SAR to wheat and barley leaf area index in the Merguellil Basin. Remote Sensing Letters, 4(11), 1107–1116.

    Article  Google Scholar 

  • Freeman, A., & Durden, S. L. (1998). A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 963–973.

    Article  Google Scholar 

  • Gao, S., Niu, Z., Huang, N., & Hou, X. (2013). Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 24, 1–8.

    Article  Google Scholar 

  • Gens, R., Atwood, D. K., & Pottier, E. (2013). Geocoding of polarimetric processing results: Alternative processing strategies. Remote Sensing Letters, 4(1), 38–44.

    Article  Google Scholar 

  • Hosseini, M., McNairn, H., Merzouki, A., & Pacheco, A. (2015). Estimation of leaf area index (LAI) in corn and soybeans using multi-polarization C-and L-band radar data. Remote Sensing of Environment, 170, 77–89.

    Article  Google Scholar 

  • Hunt, E. R., Jr., Cavigelli, M., Daughtry, C. S., Mcmurtrey, J. E., III, & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 6(4), 359–378.

    Article  Google Scholar 

  • Inoue, Y., Sakaiya, E., & Wang, C. (2014). Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sensing of Environment, 140, 257–266.

    Article  Google Scholar 

  • Jia, M., Tong, L., Chen, Y., Wang, Y., & Zhang, Y. (2013). Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks. Journal of Applied Remote Sensing, 7(1), 073509.

    Article  Google Scholar 

  • Jia, M., Tong, L., Zhang, Y., & Chen, Y. (2014). Rice biomass estimation using radar backscattering data at S-band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2), 469–479.

    Article  Google Scholar 

  • Jiao, X., McNairn, H., Shang, J., Pattey, E., Liu, J., & Champagne, C. (2011). The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Canadian Journal of Remote Sensing, 37(1), 69–81.

    Article  Google Scholar 

  • Jin, X., Yang, G., Xu, X., Yang, H., Feng, H., Li, Z., et al. (2015). Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 7(10), 13251–13272.

    Article  Google Scholar 

  • Kim, Y., Jackson, T., Bindlish, R., Hong, S., Jung, G., & Lee, K. (2014). Retrieval of wheat growth parameters with radar vegetation indices. IEEE Geoscience and Remote Sensing Letters, 11(4), 808–812.

    Article  Google Scholar 

  • Kross, A., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34, 235–248.

    Article  Google Scholar 

  • Lee, J. S., & Pottier, E. (2009). Polarimetric radar imaging: from basics to applications. New York, USA: CRC Press, Taylor&Francis Group.

    Book  Google Scholar 

  • Li, K., Brisco, B., Yun, S., & Touzi, R. (2012). Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Canadian Journal of Remote Sensing, 38(2), 169–179.

    Article  Google Scholar 

  • Lin, H., Chen, J., Pei, Z., Zhang, S., & Hu, X. (2009). Monitoring sugarcane growth using ENVISAT ASAR data. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2572–2580.

    Article  Google Scholar 

  • Lopez-Sanchez, J. M., & Ballester-Berman, J. D. (2009). Potentials of polarimetric SAR interferometry for agriculture monitoring. Radio Science, 44(2), 1–20.

    Article  Google Scholar 

  • Lopez-Sanchez, J. M., Cloude, S. R., & Ballester-Berman, J. D. (2012). Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2695–2709.

    Article  Google Scholar 

  • Lopez-Sanchez, J. M., Vicente-Guijalba, F., Ballester-Berman, J. D., & Cloude, S. R. (2014). Polarimetric response of rice fields at C-band: Analysis and phenology retrieval. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2977–2993.

    Article  Google Scholar 

  • McNairn, H., & Brisco, B. (2004). The application of C-band polarimetric SAR for agriculture: A review. Canadian Journal of Remote Sensing, 30(3), 525–542.

    Article  Google Scholar 

  • McNairn, H., Kross, A., Lapen, D., Caves, R., & Shang, J. (2014). Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 28, 252–259.

    Article  Google Scholar 

  • McNairn, H., Shang, J., Jiao, X., & Champagne, C. (2009). The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 3981–3992.

    Article  Google Scholar 

  • Paloscia, S. (2002). A summary of experimental results to assess the contribution of SAR for mapping vegetation biomass and soil moisture. Canadian Journal of Remote Sensing, 28(2), 246–261.

    Article  Google Scholar 

  • Qi, Z., Yeh, A. G. O., Li, X., Xian, S., & Zhang, X. (2015). Monthly short-term detection of land development using RADARSAT-2 polarimetric SAR imagery. Remote Sensing of Environment, 164, 179–196.

    Article  Google Scholar 

  • Raoofi, F., & Javadi, S. (2014). Modeling phonological stages of Artemisia sieberi using GDD. International Journal of Biosciences, 4(1), 225–230.

    Google Scholar 

  • Ren, T., Li, H., Lu, J., Bu, R., Li, X., & Cong, R. (2015). Crop rotation-dependent yield responses to fertilization in winter oilseed rape (Brassica napus L.). The Crop Journal, 3(5), 396–404.

    Article  Google Scholar 

  • Singh, D. (2006). Scatterometer performance with polarization discrimination ratio approach to retrieve crop soybean parameter at X-band. International Journal of Remote Sensing, 27(19), 4101–4115.

    Article  Google Scholar 

  • Tanase, M. A., Panciera, R., Lowell, K., Tian, S., Hacker, J. M., & Walker, J. P. (2014). Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests. Remote Sensing of Environment, 145, 93–104.

    Article  Google Scholar 

  • Tilly, N., Aasen, H., & Bareth, G. (2015). Fusion of plant height and vegetation indices for the estimation of barley biomass. Remote Sensing, 7(9), 11449–11480.

    Article  Google Scholar 

  • Wang, X., Ge, L., & Li, X. (2013). Pasture monitoring using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia. Remote Sensing, 5(7), 3611–3636.

    Article  Google Scholar 

  • Wiseman, G., McNairn, H., Homayouni, S., & Shang, J. (2014). RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4461–4471.

    Article  Google Scholar 

  • Yang, H., Chen, E., Li, Z., Zhao, C., Yang, G., Pignatti, S., et al. (2015). Wheat lodging monitoring using polarimetric index from RADARSAT-2 data. International Journal of Applied Earth Observation and Geoinformation, 34, 157–166.

    Article  Google Scholar 

  • Yang, H., Li, Z., Chen, E., Zhao, C., Yang, G., & Casa, R. (2014). Temporal polarimetric behavior of oilseed rape (Brassica napus L.) at C-band for early season sowing date monitoring. Remote Sensing, 6(11), 10375–10394.

    Article  Google Scholar 

  • Zhang, L., Guo, H., & Li, X. (2012). Simulation analysis on the relationship between the leaf area index and polarimetric parameters of crops. International Journal of Digital Earth, 5(4), 319–337.

    Article  Google Scholar 

  • Zhang, Y., Liu, X., Su, S., & Wang, C. (2014). Retrieving canopy height and density of paddy rice from RADARSAT-2 images with a canopy scattering model. International Journal of Applied Earth Observation and Geoinformation, 28, 170–180.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Open Research Fund of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (No. 2015LDE003), National Natural Science Foundation of China (61661136003) (Grant No. 41401477), 03-Y20A11-9001-15/16, and UK STFC Newton (Grant No. PAFic:Precision Agriculture for Family-farms in China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijun Yang or Chunjiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yang, G., Gaulton, R. et al. In-season biomass estimation of oilseed rape (Brassica napus L.) using fully polarimetric SAR imagery. Precision Agric 20, 630–648 (2019). https://doi.org/10.1007/s11119-018-9587-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9587-0

Keywords

Navigation