Skip to main content

Advertisement

Log in

Delineation of management zones and optimization of irrigation scheduling to improve irrigation water productivity and revenue in a farmland of Northwest China

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Precision agriculture has been increasingly practised in recent years. Under precision management, farmland is divided into several management zones to implement different strategies and improve irrigation water productivity and revenues. In this research, six soil properties (silt, sand, soil moisture content, available nitrogen, electrical conductivity and elevation) were selected, and fuzzy c-means clustering was used to delineate management zones. The field was divided into three zones. The differences in the mean of the soil properties among the zones were large and within a zone were small. The coefficient of variation of the properties and yield were also smaller than that before classification. The optimization was carried out by using a genetic algorithm based on the Jensen model. Three objective functions were set as maximum yield, maximum irrigation water productivity (IWP) and maximum revenue, and the weights were kept equal to 1/3. The WHCNS (soil water heat carbon nitrogen simulator) model was used to simulate the maize yield under optimized irrigation schedule for the three management zones and to calculate IWP and revenue. Compared with uniform management, IWP and revenue were increased by 0.6 kg m−3 and $61 ha−1, respectively. The optimized irrigation schedule can be used as a reference for the actual irrigation management. It can increase the IWP and revenue under the premise of achieving the target yield. The results show that the method can guide precision agricultural production and management in large-scale farmland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedinpour, M., Sarangi, A., Rajput, T. B. S., Man, S., Pathak, H., & Ahmad, T. (2012). Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management,110, 55–66.

    Google Scholar 

  • Albornoz, E. M., Kemerer, A. C., Galarza, R., Mastaglia, N., Melchiori, R., & Martinez, C. E. (2017). Development and evaluation of an automatic software for management zone delineation. Precision Agriculture,2, 1–14.

    Google Scholar 

  • Anwar, A. A., & Haq, Z. U. (2013). Genetic algorithms for the sequential irrigation scheduling problem. Irrigation Science,31, 815–829.

    Google Scholar 

  • Basso, B., Cammarano, D., Chen, D., Cafiero, G., & Amato, M. (2009). Landscape position and precipitation effects on spatial variability of wheat yield and grain protein in Southern Italy. Journal of Agronomy and Crop Science,195, 301–312.

    Google Scholar 

  • Bezdeck, J. C., Ehrlich, R., & Full, W. (1984). FCM: Fuzzy C-means algorithm. Computers and Geoscience,10, 191–203.

    Google Scholar 

  • Blake, G. R. (1965). Bulk density. In C. A. Black (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical properties (pp. 374–390). Madison, WI, USA: ASA and SSSA.

    Google Scholar 

  • Botes, J. H. F., Bosch, D. J., & Oosthuizen, L. K. (1996). A simulation and optimization approach for evaluating irrigation information. Agricultural Systems,51, 165–183.

    Google Scholar 

  • Bragato, G. (2004). Fuzzy continuous classification and spatial interpolation in conventional soil survey for soil mapping of the lower Piave plain. Geoderma,118, 1–16.

    Google Scholar 

  • Çakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research,89, 1–16.

    Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Konopka, A. E., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal,58, 1501–1511.

    Google Scholar 

  • Corbeels, M., Chirat, G., Messad, S., & Thierfelder, C. (2016). Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. European Journal of Agronomy,76, 41–53.

    Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agronomy Journal,95, 455–471.

    Google Scholar 

  • Corwin, D. L., Loague, K., & Ellsworth, T. R. (1999). Assessing non-point source pollution in the vadose zone with advanced information technologies. In D. L. Corwin, K. Loague, & T. R. Ellsworth (Eds.), Assessment of non-point source pollution in the vadose zone. Geophysical monograph (Vol. 108, pp. 1–20). Washington, DC, USA: American Geophysical Union.

    Google Scholar 

  • Dejonge, K. C., Kaleita, A. L., & Thorp, K. R. (2007). Simulating the effects of spatially variable irrigation on corn yields, costs, and revenue in Iowa. Agricultural Water Management,92, 99–109.

    Google Scholar 

  • Deng, S. P., & Tabatabai, M. A. (1997). Effect of tillage and soil residue on enzyme activities in soils. III. Phosphotases and arylsulfatase. Biology and Fertility of Soils,24, 141–146.

    CAS  Google Scholar 

  • Domínguez, A., Juan, J. A. D., Tarjuelo, J. M., Martínez, R. S., & Martínez-Romero, A. (2012a). Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment. Agricultural Water Management,110, 67–77.

    Google Scholar 

  • Domínguez, A., Martínez, R. S., Juan, J. A. D., Martínez-Romero, A., & Tarjuelo, J. M. (2012b). Simulation of maize crop behavior under deficit irrigation using MOPECO model in a semi-arid environment. Agricultural Water Management,107, 42–53.

    Google Scholar 

  • Du, T., Kang, S., Sun, J., Zhang, X., & Zhang, J. (2010). An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agricultural Water Management,97, 66–74.

    Google Scholar 

  • Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management zone analyst (MZA): Software for subfield management zone delineation. Agronomy Journal,96, 100–108.

    Google Scholar 

  • Garten, C. T., Kang, S., Brice, D. J., Schadt, C. W., & Zhou, J. (2007). Variability in soil properties at different spatial scales (1 m-1 km) in a deciduous forest ecosystem. Soil Biology & Biochemistry,10, 2621–2627.

    Google Scholar 

  • Georgiou, P. E., & Papamichail, D. M. (2008). Optimization model of an irrigation reservoir for water allocation and crop planning under various weather conditions. Irrigation Science,26, 487–504.

    Google Scholar 

  • Guastaferro, F., Castrignanò, A., Benedetto, D. D., Sollitto, D., Troccoli, A., & Cafarell, B. (2010). A comparison of different algorithms for the delineation of management zones. Precision Agriculture,11, 600–620.

    Google Scholar 

  • Guo, Q. S., Lei, Z. D., & Yang, S. X. (1996). Sensitive index of Jensen’s water production function model of wheat. Advances in Water Science,7, 20–25.

    Google Scholar 

  • Hansen, S., Jensen, H. E., Nielsen, N. E., & Svendsen, H. (1991). Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model daisy. Fertilizer Research,27, 245–259.

    CAS  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 561). New York, USA: Oxford University Press.

    Google Scholar 

  • Jaynes, D. B., Kaspar, T. C., Colvin, T. S., & James, D. E. (2003). Cluster analysis of spatiotemporal corn yield patterns in an Iowa field. Agronomy Journal,95, 574–586.

    Google Scholar 

  • Jensen, M. E. (1968). Water consumption by agricultural plants. In T. T. Kozlowski (Ed.), Water deficits and plant growth (Vol. 2, pp. 1–22). New York, USA: Academic Press.

    Google Scholar 

  • Kamphake, L. J., Hannah, S. A., & Cohen, J. M. (1967). Automated analysis for nitrate by hydrazine reduction. Water Research,1, 205–216.

    CAS  Google Scholar 

  • Kang, S., Shi, W., & Zhang, J. (2000). An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Research,67, 207–214.

    Google Scholar 

  • Kang, S., Zhang, L., & Trout, T. J. (2017). Improving agricultural water productivity to ensure food security under changing environments. Agricultural Water Management,179, 1–4.

    Google Scholar 

  • Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy,18, 267–288.

    Article  Google Scholar 

  • Khorsandi, N., & Nourbakhsh, F. (2008). Prediction of potentially mineralizable N from amidohydrolase activities in a manure-applied, corn residue-amended soil. European Journal of Soil Biology,44, 341–346.

    CAS  Google Scholar 

  • Kipkorir, E. C., & Raes, D. (2002). Transformation of yield response factor into Jensen’s sensitivity index. Irrigation and Drainage Systems,16, 47–52.

    Google Scholar 

  • Ko, J., Piccinni, G., & Steglich, E. (2009). Using EPIC model to manage irrigated cotton and maize. Agricultural Water Management,96, 1323–1331.

    Google Scholar 

  • Kuo, S. F., Merkley, G. P., & Liu, C. W. (2000). Decision support for irrigation project planning using a genetic algorithm. Agricultural Water Management,45, 243–266.

    Google Scholar 

  • Kyaw, T., Ferguson, R. B., Adamchuk, V. I., Marx, D. B., Tarkalson, D. D., & McCallister, D. L. (2008). Delineating site-specific management zones for pH-induced iron chlorosis. Precision Agriculture,9, 71–84.

    Google Scholar 

  • Li, D. F., & Shao, M. A. (2014). Soil organic carbon and influencing factors in different landscapes in an arid region of northwestern China. CATENA,116, 95–104.

    CAS  Google Scholar 

  • Li, S., Kang, S., Zhang, L., Du, T., Tong, L., Ding, R., et al. (2015a). Ecosystem water use efficiency for a sparse vineyard in arid northwest China. Agricultural Water Management,148, 24–33.

    Google Scholar 

  • Li, T., Hao, X. M., & Kang, S. Z. (2016). Spatial variability of grapevine bud burst percentage and its association with soil properties at field scale. PLoS ONE,11, e0165738.

    PubMed  PubMed Central  Google Scholar 

  • Li, Y., Shi, Z., Li, F., & Li, H. Y. (2007). Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics in Agriculture,56, 174–186.

    Google Scholar 

  • Li, Z., Hu, K., Li, B., He, M., & Zhang, J. (2015b). Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach. Agricultural Water Management,159, 19–34.

    Google Scholar 

  • Liang, H., Hu, K., Batchelor, W. D., Qi, Z., & Li, B. (2016a). An integrated soil-crop system model for water and nitrogen management in North China. Scientific Reports,6, 25755.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, H., Hu, K., & Li, B. (2016b). Parameter optimization and sensitivity analysis of soil-crop system model using PEST. Transactions of the Chinese Society of Agricultural Engineering,32, 78–85.

    Google Scholar 

  • Liang, H., Hu, K., Qin, W., Zuo, Q., & Zhang, Y. (2017). Modelling the effect of mulching on soil heat transfer, water movement and crop growth for ground cover rice production system. Field Crops Research,201, 97–107.

    Google Scholar 

  • Liang, H., Qi, Z., Hu, K., Prasher, S. O., & Zhang, Y. (2016c). Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model? Journal of Environmental Management,181, 16–25.

    CAS  PubMed  Google Scholar 

  • Ma, L., Trout, T. J., Ahuja, L. R., Bausch, W. C., Saseendran, S. A., Malone, R. W., et al. (2012). Calibrating RZWQM2 model for maize responses to deficit irrigation. Agricultural Water Management,103, 140–149.

    Google Scholar 

  • Machado, S., Edjr, B., Archer, T. L., Bordovsky, J., Rosenow, D. T., Bynum, E. D., et al. (2002). Spatial and temporal variability of sorghum grain yield: Influence of soil, water, pests, and diseases relationships. Precision Agriculture,3, 389–406.

    Google Scholar 

  • Mamedov, A. I., Levy, G. J., Shainberg, I., & Letey, J. (2001). Wetting rate, sodicity, and soil texture effects on infiltration rate and runoff. Soil Research,39, 1293–1305.

    CAS  Google Scholar 

  • Mansourifar, C., Sanavy, S. A. M. M., & Saberali, S. F. (2010). Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agricultural Water Management,97, 12–22.

    Google Scholar 

  • Marques da Silva, J. R. (2006). Analysis of the spatial and temporal variability of irrigated maize yield. Biosystems Engineering,94, 337–349.

    Google Scholar 

  • Marques da Silva, J. R., & Silva, L. L. (2008). Evaluation of the relationship between maize yield spatial and temporal variability and different topographic attributes. Biosystems Engineering,101, 183–190.

    Google Scholar 

  • Moharana, P. C., Jena, R. K., Pradhan, U. K., Nogiya, M., Tailor, B. L., Singh, R. S., et al. (2019). Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. Precision Agriculture. https://doi.org/10.1007/s11119-019-09671-9.

    Article  Google Scholar 

  • Moral, F. J., Terrón, J. M., & Marques da Silva, J. R. (2010). Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research,106, 335–343.

    Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology,10, 282–290.

    Google Scholar 

  • Nguyen, D. C. H., Ascough, J. C., Maier, H. R., Dandy, C. G., & Andales, A. (2017). Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environmental Modelling and Software,97, 32–45.

    Google Scholar 

  • O’Kelly, B. C. (2004). Accurate determination of moisture content of organic soils using the oven drying method. Drying Technology,22, 1532–2300.

    Google Scholar 

  • Odeh, I. O. A., Chittleborough, D. J., & Mcbratney, A. B. (1992). Soil pattern recognition with fuzzy-c-means: Application to classification and soil-landform interrelationships. Soil Science Society of America Journal,56, 505–516.

    Google Scholar 

  • Pandey, R. K., Maranville, J. W., & Admou, A. (2000). Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I. Grain yield and yield components. Agricultural Water Management,46, 1–13.

    Google Scholar 

  • Peralta, N. R., & Costa, J. L. (2013). Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Computers and Electronics in Agriculture,99, 218–226.

    Google Scholar 

  • Peralta, N. R., Costa, J. L., Balzarini, M., & Angelini, H. (2013). Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Canadian Journal of Soil Science,93, 205–218.

    Google Scholar 

  • Qi, Z., Feng, H., Zhao, Y., Zhang, T., Zhang, Z., & Yang, A. (2018). Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China. Agricultural Water Management,201, 219–231.

    Google Scholar 

  • Reca, J., & Martinez, J. (2006). Genetic algorithms for the design of looped irrigation water distribution networks. Water Resources Research,42, 110–119.

    Google Scholar 

  • Rossi, R. E., Mulla, D. J., Journel, A. G., & Franz, E. H. (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs,62, 277–314.

    Google Scholar 

  • Ryżak, M., & Bieganowski, A. (2011). Methodological aspects of determining soil particle-size distribution using the laser diffraction method. Journal of Plant Nutrition and Soil Science,174, 624–633.

    Google Scholar 

  • Sadati, S. K., Speelman, S., Sabouhi, M., Gitizadeh, M., & Ghahraman, B. (2014). Optimal irrigation water allocation using a genetic algorithm under various weather conditions. Water,6, 3068–3084.

    Google Scholar 

  • Shukla, M. K., Slater, B. K., Lai, R., & Cepuder, P. (2004). Spatial variability of soil properties and potential management classification of a chernozemic field in lower Austria. Soil Science,169, 852–860.

    CAS  Google Scholar 

  • Šimůnek, J. (2008). Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose Zone Journal,72, 587–600.

    Google Scholar 

  • Šimůnek, J., Genuchten, M. T. V., & Šejna, M. (2016). Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal,7, 587–600.

    Google Scholar 

  • Slavich, P. G., & Petterson, G. H. (1993). Estimating the electrical conductivity of saturated paste extracts from 1:5 soil, water suspensions and texture. Australian Journal of Soil Research,31, 73–81.

    Google Scholar 

  • Timlin, D. J., Pachepsky, Ya., Snyder, V. A., & Bryant, R. B. (1998). Spatial and temporal variability of corn grain yield on a hillslope. Soil Science Society of America Journal,62, 764–773.

    CAS  Google Scholar 

  • Tsakiris, G. P. (1982). A method for applying crop sensitivity factors in irrigation scheduling. Agricultural Water Management,5, 335–343.

    Google Scholar 

  • van Liew, M. W., & Garbrecht, J. (2003). Hydrologic simulation of the Little Washita river experimental watershed using SWAT. Journal of the American Water Resources Association,39, 413–426.

    Google Scholar 

  • Wakindiki, I. I. C. (2002). Soil mineralogy and texture effects on crust micromorphology, infiltration, and erosion. Soil Science Society of America Journal,66, 897.

    CAS  Google Scholar 

  • Wang, Y. R., Lei, Z. D., & Yang, S. X. (1997). Cumulative function of sensitive index for winter wheat. Journal of Hydraulic Engineering,5, 29–36.

    Google Scholar 

  • Warrick, A. W., & Nielsen, D. R. (1980). Spatial variability of soil physical properties in the field. In D. Hillel (Ed.), Applications of soil physics (pp. 319–344). New York, USA: Academic Press.

    Google Scholar 

  • Wen, Y., Shang, S., & Yang, J. (2017). Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate. Agricultural Water Management,192, 33–44.

    Google Scholar 

  • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society,63, 1309–1313.

    Google Scholar 

  • Xue, X., Mai, W., Zhao, Z., Zhang, K., & Tian, C. (2017). Optimized nitrogen fertilizer application enhances absorption of soil nitrogen and yield of castor with drip irrigation under mulch film. Industrial Crops and Products,95, 156–162.

    CAS  Google Scholar 

  • Yang, S., Liu, F., Song, X., Lu, Y., Li, D., Zhao, Y., et al. (2019). Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging: A case study in the Heihe River Basin, northwest China. Ecological Indicators,102, 252–264.

    Google Scholar 

  • Zhang, B., Yuan, S. Q., Li, H., Cong, X. Q., & Zhao, B. J. (2006). Optimized irrigation yield model for winter wheat based on genetic algorithm. Transactions of the Chinese Society of Agricultural Engineering,22, 12–15.

    Google Scholar 

  • Zhang, J., Cheng, Z., & Zhang, R. (2012). Regulated deficit drip irrigation influences on seed maize growth and yield under film. Procedia Engineering,28, 464–468.

    Google Scholar 

  • Zhao, W. X., Li, J. S., Yang, R. M., & Li, Y. F. (2018). Determining placement criteria of moisture sensors through temporal stability analysis of soil water contents for a variable rate irrigation system. Precision Agriculture,19, 648–665.

    Google Scholar 

  • Zhou, Q. (2016). Influence of water and nitrogen management and planting density on the growth of seed maize under drip irrigation with mulch in an arid region of Northwest China (Masters thesis, China Agricultural University, Beijing) (In Chinese with English abstract).

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51725904, 51439006, 51621061), the Research Projects of Agricultural Public Welfare Industry in China (201503125) and the Discipline Innovative Engineering Plan (111 Program, B14002). We thank NMSU Agricultural Experimental Station and Mr. Frank Sholedice for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisheng Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wang, S., Shukla, M.K. et al. Delineation of management zones and optimization of irrigation scheduling to improve irrigation water productivity and revenue in a farmland of Northwest China. Precision Agric 21, 655–677 (2020). https://doi.org/10.1007/s11119-019-09688-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09688-0

Keywords

Navigation