Skip to main content
Log in

Resonance Raman spectroscopy

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Resonance Raman spectroscopy may yield precise information on the conformation of, and on the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process, whether isolated in solvents, embedded in soluble or membrane proteins, or, as shown recently, in vivo. By making use of this technique, it is possible, for instance, to relate the electronic properties of these molecules to their structure and/or the physical properties of their environment, or to determine subtle changes of their conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman spectroscopy, the information content of resonance Raman spectra of chlorophyll and carotenoid molecules is described in this review, together with the experiments which helped in determining which structural parameter each Raman band is sensitive to. A selection of applications of this technique is then presented, in order to give a fair and precise idea of which type of information can be obtained from its use in the field of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Stokes and anti-Stokes Raman shifts are named after George Gabriel Stokes (1819–1903).

Abbreviations

BChl:

Bacteriochlorophyll

Chl:

Chlorophyll

LH:

Light-harvesting

LHCII:

Major light-harvesting protein from higher plants

References

  • Albrecht AC (1961) On the theory of Raman intensities. J Chem Phys 34:1476–1484. doi:10.1063/1.1701032

    Article  CAS  Google Scholar 

  • Bissig I, Brunisholz RA, Suter F, Cogdell RJ, Zuber H (1988) The complete amino acid sequences of the B800-850 antenna polypeptides from Rhodopseudomonas acidophila strain 7750. ZeitNaturforschung 43:77–83

    CAS  Google Scholar 

  • Brunisholz RA, Zuber H (1992) Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae. J Photochem Photobiol 15:113–140. doi:10.1016/1011-1344(92)87010-7

    Article  CAS  Google Scholar 

  • Cecarelli M, Lutz M, Marchi M (2009) A density functional normal mode calculation of a bacteriochlorophyll a derivative. J Am Chem Soc 122:3532–3533. doi:10.1021/ja993849s

    Article  Google Scholar 

  • Cherepy NJ, Shreve AP, Moore LJ, Franzen S, Boxer S, Mathies RA (1994) Near-infrared resonance Raman spectroscopy of the special pair and the accessory bacteriochlorophylls in photosynthetic reaction centers. J Phys Chem 98:6023–6029. doi:10.1021/j100074a032

    Article  CAS  Google Scholar 

  • Cogdell RJ, Durant I, Valentine J, Lindsay JG, Schmidt K (1983) The isolation and partial characterization of the light-harvesting pigment-protein complement of Rhodopseudomonas acidophila. Biochim Biophys Acta 722:427–435. doi:10.1016/0005-2728(83)90058-0

    Article  CAS  Google Scholar 

  • Dallinger RF, Guanci JJ, Woodruff WH, Rodgers MA (1979) Vibrational spectroscopy of the electronically excited state: pulse radiolysis/time-resolved resonance Raman study of the triplet β-carotene. J Am Chem Soc 101:1355–1357. doi:10.1021/ja00499a088

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Ebbert V, Zarter CR, Adams WWIII (2006) The relationship between photoinhibition and thermal dissipation. In: DemmigAdams B, Adams WWIII, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Advances in photosynthesis and respiration, vol 21. Springer, Dordrecht, pp 39–48

    Chapter  Google Scholar 

  • Dokter AM, van Hemert MC, In’t Velt CM, van der Hoef K, Lugtenburg J, Frank HA, Groenen EJJ (2002) Resonance Raman spectrum of all-trans-spheroidene—DFT analysis and isotope labeling. J Phys Chem A 106:9463–9469

    Article  CAS  Google Scholar 

  • Feiler U, Albouy D, Lutz M, Robert B (1994a) Pigment interactions in chlorosome of various green bacteria. Photosynth Res 41:175–180. doi:10.1007/BF02184158

    Article  CAS  Google Scholar 

  • Feiler U, Mattioli TA, Katheder I, Scheer H, Lutz M, Robert B (1994b) Effects of vinyl substitutions on resonance Raman spectra of (bacterio)chlorophylls. J Raman Spectrosc 25:365–370. doi:10.1002/jrs.1250250513

    Article  CAS  Google Scholar 

  • Fowler GJS, Visschers RW, Grief GG, van Grondelle R, Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355:848–850. doi:10.1038/355848a0

    Article  PubMed  CAS  Google Scholar 

  • Fowler GJS, Sockalingum GD, Robert B, Hunter CN (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at α-Tyr-44 and α-Tyr-45. Biochem J 299:695–700

    PubMed  CAS  Google Scholar 

  • Frolov D, Gall A, Lutz M, Robert B (2002) Structural asymmetry of bacterial reaction centers: a Qy resonant Raman study of monomer bacteriochlorophyll. J Phys Chem A 106:3605–3613. doi:10.1021/jp0133586

    Article  CAS  Google Scholar 

  • Fujiwara M, Tasumi M (1986) Metal-sensitive bands in the Raman and infrared spectra of intact and metal-substituted chlorophyll a. J Phys Chem 90:5646–5650. doi:10.1021/j100280a033

    Article  CAS  Google Scholar 

  • Halloren E, McDermott G, Lindsay JG, Miller C, Freer AA, Isaacs NW, Cogdell RJ (1995) Studies on the light-harvesting complexes from the thermotolerant purple bacterium Rhodopseudomonas cryptolactis. Photosynth Res 44:149–155. doi:10.1007/BF00018305

    Article  CAS  Google Scholar 

  • Hashimoto H, Koyama Y (1989) Raman spectra of all-trans β-carotene in the S1 and T1 states produced by direct photoexcitation. Chem Phys Lett 163:251–256. doi:10.1016/0009-2614(89)80045-4

    Article  CAS  Google Scholar 

  • Heinemeyer EA, Schmidt K (1983) Changes in carotenoid biosynthesis caused by variations of growth conditions in cultures of Rps. acidophila strain 7050. Arch Microbiol 134:217–221. doi:10.1007/BF00407761

    Article  CAS  Google Scholar 

  • Koyama Y, Takii T, Saiki K, Tsukida K, Yamashita KJ (1982) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction centers of Rhodopseudomas sphaeroides G1C with those of cis-trans isomers from β-carotene. Biochim Biophys Acta 680:109–118. doi:10.1016/0005-2728(82)90001-9

    Article  CAS  Google Scholar 

  • Koyama Y, Takii T, Saiki K, Tsukida K (1983) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. 2) Comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-carotene. Photobiochem Photobiophys 5:139–150

    CAS  Google Scholar 

  • Koyama Y, Takatsuka I, Nakata M, Tasumi M (1988) Raman and infra-red spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: key bands distinguishing stretched or terminal bent configurations from central-bent configurations. J Raman Spectrosc 19:37–49. doi:10.1002/jrs.1250190107

    Article  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621. doi:10.1038/367614a0

    Article  PubMed  Google Scholar 

  • Lapouge K, Näveke A, Sturgis JN, Hartwich G, Renaud D, Simonin I, Lutz M, Scheer H, Robert B (1998) Non-bonding molecular factors influencing the stretching wavenumbers of the conjugated carbonyl groups of bacteriochlorophyll a. J Raman Spectrosc 29:1–6. doi:10.1002/(SICI)1097-4555(199810/11)29:10/11<977::AID-JRS325>3.0.CO;2-K

    Article  Google Scholar 

  • Lapouge K, Näveke A, Gall A, Ivancich A, Seguin J, Scheer H, Sturgis JN, Mattioli TA, Robert B (1999) Conformation of bacteriochlorophyll molecules in photosynthetic proteins from purple bacteria. Biochemistry 38:11115–11121. doi:10.1021/bi990723z

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72A resolution. Nature 428:287–292. doi:10.1038/nature02373

    Article  PubMed  CAS  Google Scholar 

  • Lutz M, Robert B (1988) Chlorophylls and the photosynthetic membrane. In: Spiro T (ed) Biological applications of Raman spectroscopy, vol III. Wiley, New York, pp 347–411

    Google Scholar 

  • Lutz M, Agalidis A, Hervo G, Cogdell RJC, Reiss-Husson F (1978) On the state of the carotenoids bound to reaction centers of photosynthetic bacteria: a resonance Raman study. Biochim Biophys Acta 503:387 303

    Google Scholar 

  • Lutz M, Szponarski W, Berger G, Robert B, Neumann JM (1987) The stereoisomerism of bacterial, reaction center-bound carotenoids revisited: an electronic absorption, resonance Raman and 1H-NMR study. Biochim Biophys Acta 894:423–433. doi:10.1016/0005-2728(87)90121-6

    Article  CAS  Google Scholar 

  • Mattioli TA, Hoffmann A, Robert B, Schrader B, Lutz M (1991) Primary donor structure and interactions in bacterial reaction centers from near-infrared Fourier transform resonance Raman spectroscopy. Biochemistry 30:4648–4654. doi:10.1021/bi00233a002

    Article  PubMed  CAS  Google Scholar 

  • Mattioli T, Hoffmann A, Sockalingum DG, Schrader B, Robert B, Lutz M (1993) Application of near IR Fourier-Transform resonance Raman spectroscopy to the study of photosynthetic systems. Spectrochim Acta 49A:785–799

    CAS  Google Scholar 

  • Näveke A, Lapouge K, Sturgis JN, Hartwich G, Simonin I, Scheer H, Robert B (1997) Resonance Raman spectroscopy of metal-substituted bacteriochlorophylls: Characterization of Raman bands sensitive to the bacteriochlorin conformation. J Raman Spectrosc 28:599–604. doi:10.1002/(SICI)1097-4555(199708)28:8<599::AID-JRS136>3.0.CO;2-C

    Article  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure. J Phys Chem B 109:10493–10504. doi:10.1021/jp044082f

    Article  PubMed  CAS  Google Scholar 

  • Pascal AA, Caron L, Rousseau B, Lapouge K, Duval JC, Robert B (1998) Resonance Raman spectroscopy of a Light-harvesting protein from the brown alga Laminaria saccharina. Biochemistry 37:2450–2457. doi:10.1021/bi9719657

    Article  PubMed  CAS  Google Scholar 

  • Pascal AA, Liu ZF, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137. doi:10.1038/nature03795

    Article  PubMed  CAS  Google Scholar 

  • Rimai L, Heyde ME, Gill D (1973) Vibrational spectra of some carotenoids and related linear polyenes. A Raman spectroscopic study. J Am Chem Soc 95:4493–4501. doi:10.1021/ja00795a005

    Article  PubMed  CAS  Google Scholar 

  • Robert B (1999) The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoids. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of Carotenoids. Advances in photosynthesis and respiration, vol 8. Springer, Dordrecht, pp 189–201

    Chapter  Google Scholar 

  • Robert B (2008) Spectroscopic properties of antenna complexes from purple bacteria. In: Hunter N, Daldal F, Thurnauer M, Beatty T (eds) The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer, Dordrecht, pp 199–212

    Chapter  Google Scholar 

  • Robert B, Lutz M (1985) Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra. Biochim Biophys Acta 807:10–23. doi:10.1016/0005-2728(85)90048-9

    Article  CAS  Google Scholar 

  • Robert B, Andrianambinintsoa S, Lutz M (1985) Structural characterization of high 800 nm-absorbing light- harvesting complexes from Rhodospirillales from their resonance Raman spectra. J Biochem 98:349–354

    PubMed  CAS  Google Scholar 

  • Robert B, Cogdell RJC, van Grondelle R (2003) The light-harvesting system of purple cacteria. In: Parson WW, Green B (eds) Light-harvesting antennas. Advances in photosynthesis and respiration, vol 13. Kluwer Academic Publishers (now Springer), Dordrecht

    Google Scholar 

  • Ruban AV, Pascal AA, Robert B (2000) Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Lett 477:181–185. doi:10.1016/S0014-5793(00)01799-3

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Pascal AA, Lee PJ, Robert B, Horton P (2002) Molecular configuration of xanthophyll cycle carotenoids in Photosystem II antenna complexes. J Biol Chem 277:42937–42942. doi:10.1074/jbc.M207823200

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578. doi:10.1038/nature06262

    Article  PubMed  CAS  Google Scholar 

  • Sashima T, Limantara L, Koyama Y (2000) Changes in carbon-carbon and carbon-nitrogen stretching force constants in the macrocycles of bacteriochlorophyll a and bacteriopheophytin a upon triplet and singlet excitation: Resonance-Raman spectroscopy and normal-coordinate analysis of the unlabeled and totally 15N-, 13C-, and 2H-labeled species. J Phys Chem B 104:8308–8320. doi:10.1021/jp000645l

    Article  CAS  Google Scholar 

  • Sturgis JN, Robert B (1997) Pigment binding-site and electronic properties in light-harvesting proteins of purple bacteria. J Phys Chem B 101:7227–7231. doi:10.1021/jp963363n

    Article  CAS  Google Scholar 

  • Sturgis JN, Jirsakova V, Reiss-Husson F, Cogdell RJ, Robert B (1995) Structure and properties of the bacteriochlorophyll binding site in peripheral light-harvesting complexes of purple bacteria. Biochemistry 34:517–523. doi:10.1021/bi00002a016

    Article  PubMed  CAS  Google Scholar 

  • Wirtz AC, van Hemert MC, Lugtenburg J, Frank HA, Groenen EJJ (2007) Two stereoisomers of spheroidene in the Rhodobacter sphaeroides R26 reaction center: a DFT analysis of resonance Raman spectra. Biophys J 93:981–991. doi:10.1529/biophysj.106.103473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge generous support from the French National Research Agency (ANR, programs MASTRIT and CAROPROTECT). This manuscript was edited by Govindjee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Robert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, B. Resonance Raman spectroscopy. Photosynth Res 101, 147–155 (2009). https://doi.org/10.1007/s11120-009-9440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9440-4

Keywords

Navigation