Skip to main content
Log in

Molecular dynamics of the diatom thylakoid membrane under different light conditions

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

During the last years significant progress was achieved in unraveling molecular characteristics of the thylakoid membrane of different diatoms. With the present review it is intended to summarize the current knowledge about the structural and functional changes within the thylakoid membrane of diatoms acclimated to different light conditions. This aspect is addressed on the level of the organization and regulation of light-harvesting proteins, the dissipation of excessively absorbed light energy by the process of non-photochemical quenching, and the lipid composition of diatom thylakoid membranes. Finally, a working hypothesis of the domain formation of the diatom thylakoid membrane is presented to highlight the most prominent differences of heterokontic thylakoids in comparison to vascular plants and green algae during the acclimation to low and high light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DDE:

Diadinoxanthin de-epoxidase

Ddx:

Diadinoxanthin

DEP:

Diatoxanthin epoxidase

DGTS:

1,2-Diacylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine

DTT:

Dithiothreitol

Dtx:

Diatoxanthin

FCP:

Fucoxanthin chlorophyll protein

HL:

High light

LHC:

Light-harvesting complex

LL:

Low light

MGDG:

Monogalactosyldiacylglycerol

DGDG:

Digalactosyldiacylglycerol

NPQ:

Non-photochemical quenching of chlorophyll a fluorescence

PC:

Phosphatidylcholine

PE:

Phospatidylethanolamine

PG:

Phosphatidylglycerol

PQ:

Plastoquinone

PS:

Photosystem

qE:

High-energy-state quenching

qI:

Photoinhibitory quenching

qT:

Quenching related to state transitions

SQDG:

Sulfoquinovosyldiacylglycerol

VDE:

Violaxanthin de-epoxidase

Zx:

Zeaxanthin

References

  • Anderson JM, Goodchild D, Boardman N (1973) Composition of the photosystems and chloroplast structure in extreme shade plants. Biochim Biophys Acta 325:573–585

    Google Scholar 

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Ann Rev Plant Physiol 37:93–136

    CAS  Google Scholar 

  • Anning T, MacIntyre HL, Pratt SM, Sammes PJ, Gibb S, Geider RJ (2000) Photoacclimation in the marine diatom Skeletonema costatum. Limnol Oceanogr 45:1807–1817

    Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Schnitzler-Parker M, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306:79–86

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B Biol Sci 355:1433–1446

    PubMed  CAS  Google Scholar 

  • Bailleul B, Rogato A, de Martino A, Coesel S, Cardol P, Bowler C, Falciatore A, Finazzi G (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci USA 107:18214–18219

    PubMed  CAS  Google Scholar 

  • Becker F, Rhiel E (2006) Immuno-electron microscopic quantification of the fucoxanthin chlorophyll a/c binding polypeptides Fcp2, Fcp4, and Fcp6 of Cyclotella cryptica grown under low- and high-light intensities. Int Microbiol 9:29–36

    PubMed  CAS  Google Scholar 

  • Beer A, Gundermann K, Beckmann J, Büchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45:13046–13053

    PubMed  CAS  Google Scholar 

  • Berner T, Dubinksky Z, Wyman K, Falkowski PG (1989) Photoadaptation and the package effect in Dunaliella tertiolecta (Chlorophyceae). J Phycol 25:70–78

    CAS  Google Scholar 

  • Böttcher B, Gräber P (2000) The structure of the H+-ATP synthase from chloroplasts and its subcomplexes as revealed by electron microscopy. Biochim Biophys Acta 1458:404–416

    PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    PubMed  CAS  Google Scholar 

  • Brakemann T, Schlormann W, Marquardt J, Nolte M, Rhiel E (2006) Association of fucoxanthin chlorophyll a/c-binding polypeptides with photosystems and phosphorylation in the centric diatom Cyclotella cryptica. Protist 157:463–475

    PubMed  CAS  Google Scholar 

  • Büchel C (2003) Fucoxanthin–chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    PubMed  Google Scholar 

  • Büchel C, Wilhelm C (1992) Evidence for a lateral heterogeneity by patchwork-like areas enriched with photosystem I complexes in the three thylakoid lamellae of Pleurochloris meiringensis (Xanthophyceae). J Crypt Bot 2:375–386

    Google Scholar 

  • Cruz S, Goss R, Wilhelm C, Leegood R, Horton P, Jakob T (2011) Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana. J Exp Bot 62:509–519

    Google Scholar 

  • De Brouwer JF, Stal LJ (2002) Daily fluctuations of exopolymers in cultures of the bentic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). J Phycol 38:464–472

    Google Scholar 

  • Dimier C, Corato F, Tramontano F, Brunet C (2007) Photoprotection and xanthophyll-cycle activity in three marine diatoms. J Phycol 43:937–947

    CAS  Google Scholar 

  • Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant Cell Physiol 27:1335–1349

    CAS  Google Scholar 

  • Eisenstadt D, Ohad I, Keren N, Kaplan A (2008) Changes in the photosynthetic reaction centre II in the diatom Phaeodactylum tricornutum result in non-photochemical fluorescence quenching. Environ Microbiol 10:1997–2007

    PubMed  CAS  Google Scholar 

  • Eisenstadt D, Barkan E, Luz B, Kaplan A (2010) Enrichment of oxygen heavy isotopes during photosynthesis in phytoplankton. Photosynth Res 103:97–103

    PubMed  CAS  Google Scholar 

  • Engelken J, Brinkmann H, Adamska I (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol Biol 10:233

    PubMed  Google Scholar 

  • Eppard M, Krumbein WE, von Haeseler A, Rhiel E (2000) Characterization of fcp4 and fcp12, two additional genes encoding light harvesting proteins of Cyclotella cryptica (Bacillariophyceae) and phylogenetic analysis of this complex gene family. Plant Biol 2:283–289

    CAS  Google Scholar 

  • Feikema WO, Marosvölgyi MA, Lavaud J, van Gorkom HJ (2006) Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1757:829–834

    Google Scholar 

  • Flameling IA, Kromkamp J (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnol Oceanogr 43:284–297

    CAS  Google Scholar 

  • Frank H, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski M (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395

    CAS  Google Scholar 

  • Gibbs SP (1962) The ultrastructure of the pyrenoids of algae, exclusive of the green algae. J Ultra Mol Struct R 7:247–261

    Google Scholar 

  • Gibbs SP (1970) The comparative ultrastructure of the algal chloroplast. Ann NY Acad Sci 175:454–473

    Google Scholar 

  • Gildenhoff N, Amarie S, Gundermann K, Beer A, Büchel C, Wachtveitl J (2010) Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin–chlorophyll proteins. Biochim Biophys Acta 1797:543–549

    PubMed  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating emchanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    PubMed  CAS  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    Google Scholar 

  • Goss R, Wilhelm C (2009) Lipids in algae, lichens and mosses. In: Wada H, Murata N, Govindjee (eds) Lipids in photosynthesis: essential and regulatory functions, vol 5. Springer Science + Business Media B, Dordrecht, The Netherlands, pp 117–137

  • Goss R, Lohr M, Latowski D, Grzyb J, Vieler A, Wilhelm C, Strzalka K (2005) Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry 44:4028–4036

    PubMed  CAS  Google Scholar 

  • Goss R, Pinto EA, Wilhelm C, Richter M (2006) The importance of a highly active and [Delta]pH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021

    PubMed  CAS  Google Scholar 

  • Goss R, Latowski D, Grzyb J, Vieler A, Lohr M, Wilhelm C, Strzalka K (2007) Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. Biochim Biophys Acta 1768:67–75

    PubMed  CAS  Google Scholar 

  • Goss R, Nerlich J, Lepetit B, Schaller S, Vieler A, Wilhelm C (2009) The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for macrodomain organization of the diatom thylakoid membrane. J Plant Physiol 166:1839–1854

    PubMed  CAS  Google Scholar 

  • Grabowski B, Tan S, Cunningham FX, Gantt E (2000) Characterization of the Porphyridium cruentum Chl a-binding LHC by in vitro reconstitution: LHCaR1 binds 8 Chl a molecules and proportionately more carotenoids than CAB proteins. Photosynth Res 63:85–96

    PubMed  CAS  Google Scholar 

  • Green BR (2007) Evolution of light-harvesting antennas in an oxygen world. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier, Burlington, USA, pp 37–53

    Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Goss R (2006) Influence of ascorbate and pH on the activity of the diatom xanthophyll cycle-enzyme diadinoxanthin de-epoxidase. Physiol Plant 126:205–211

    CAS  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Goss R (2009) The regulation of xanthophyll cycle activity and NPQ by two different types of alternative electron flow in the diatoms P. tricornutum and C. meneghiniana. Biochim Biophys Acta 1787:929–938

    PubMed  CAS  Google Scholar 

  • Gundermann K, Büchel C (2008) The fluorescence yield of the trimeric fucoxanthin–chlorophyll–protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynth Res 95:229–235

    PubMed  CAS  Google Scholar 

  • Haferkamp S, Haase W, Pascal AA, van Amerongen H, Kirchhoff H (2010) Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. J Biol Chem 285:17020–17028

    Google Scholar 

  • Hager A (1967) Untersuchungen über die lichtinduzierten reversiblen Xanthophyllumwandlungen an Chlorella und Spinacia. Planta 74:148–172

    CAS  Google Scholar 

  • Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin-Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89:224–243

    CAS  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li X, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    PubMed  CAS  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll–protein complex. FEBS Lett 292:1–4

    PubMed  CAS  Google Scholar 

  • Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079

    PubMed  CAS  Google Scholar 

  • Jakob T, Goss R, Wilhelm C (1999) Activation of diadinoxanthin de-epoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biol 1:76–82

    CAS  Google Scholar 

  • Jakob T, Wagner H, Stehfest K, Wilhelm C (2007) A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation. J Exp Bot 58:2101–2112

    PubMed  CAS  Google Scholar 

  • Janssen M, Bathke L, Marquardt J, Krumbein WE, Rhiel E (2001) Changes in the photosynthetic apparatus of diatoms in response to low and high light intensities. Int Microbiol 4:27–33

    PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    PubMed  CAS  Google Scholar 

  • Joshi AS, Zhou J, Gohil VM, Chen S, Greenberg ML (2009) Cellular functions of cardiolipin in yeast. Biochim Biophys Acta 1793:212–218

    PubMed  CAS  Google Scholar 

  • Joshi-Deo J, Schmidt M, Gruber A, Weisheit W, Mittag M, Kroth PG, Büchel C (2010) Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. J Exp Bot 61:3079–3087

    PubMed  CAS  Google Scholar 

  • Joyard J, Maréchal E, Miège C, Block MA, Dorne AJ, Douce R (1998) Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 21–52

    Google Scholar 

  • Koziol AG, Borza T, Ishida KI, Keeling P, Lee RW, Durnford DG (2007) Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol 143:1802–1816

    PubMed  CAS  Google Scholar 

  • Kurasova I, Cajanek M, Kalina J, Urban O, Spunda V (2002) Characterization of acclimation of Hordeum vulgare to high irradiation based on different responses of photosynthetic activity and pigment composition. Photosynth Res 72:71–83

    PubMed  CAS  Google Scholar 

  • Lavaud J, Kroth PG (2006) In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant Cell Physiol 47:1010–1016

    PubMed  CAS  Google Scholar 

  • Lavaud J, van Gorkom H, Etienne A (2002a) Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms. Photosynth Res 74:51–59

    PubMed  CAS  Google Scholar 

  • Lavaud J, Rousseau B, van Gorkom HJ, Etienne A (2002b) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406

    PubMed  CAS  Google Scholar 

  • Lavaud J, Rousseau B, Etienne A (2004) General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol 40:130–137

    Google Scholar 

  • Lavaud J, Strzepek RF, Kroth PG (2007) Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol Oceanogr 52:1188–1194

    CAS  Google Scholar 

  • Lepetit B, Volke D, Szabo M, Hoffmann R, Garab G, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46:9813–9822

    PubMed  CAS  Google Scholar 

  • Lepetit B, Volke D, Szábo M, Hoffmann R, Garab G, Wilhelm C, Goss R (2008) The oligomeric antenna of the diatom P. tricornutum—localisation of diadinoxanthin cycle pigments. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Energy from the sun. Springer, Dordrecht, The Netherlands, pp 283–286

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved, and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920

    PubMed  CAS  Google Scholar 

  • Li X, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S et al (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    PubMed  CAS  Google Scholar 

  • Li X, Müller-Moulé P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99:15222–15227

    PubMed  CAS  Google Scholar 

  • Lichtenthaler H, Buschmann C, Döll M, Fietz H, Bach T, Kozel U, Meier D, Rahmsdorf U (1981) Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth Res 2:115–141

    Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96:8784–8789

    PubMed  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Google Scholar 

  • Meyer AA, Tackx M, Daro N (2000) Xanthophyll cycling in Phaeocystis globosa and Thalassiosira sp.: a possible mechanism for species succession. J Sea Res 43:373–384

    CAS  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    Google Scholar 

  • Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C et al (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta 1787:1189–1197

    PubMed  CAS  Google Scholar 

  • Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513

    PubMed  Google Scholar 

  • Murata N, Siegenthaler PA (1998) Lipids in photosynthesis: an overview. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–20

    Google Scholar 

  • Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A, Iwai M, Takahashi T, Kashino Y, Enami I (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362

    PubMed  CAS  Google Scholar 

  • Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A, Kashino Y, Mimuro M, Ikeuchi M, Enami I (2010) Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797:160–166

    PubMed  CAS  Google Scholar 

  • Niyogi K (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Phys 50:333–359

    CAS  Google Scholar 

  • Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One 4:e7743

    PubMed  Google Scholar 

  • Oeltjen A, Marquardt J, Rhiel E (2004) Differential circadian expression of genes fcp2 and fcp6 in Cyclotella cryptica. Int Microbiol 7:127–131

    PubMed  CAS  Google Scholar 

  • Owens TG (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum: II. Distribution of excitation energy between the photosystems. Plant Physiol 80:739–746

    PubMed  CAS  Google Scholar 

  • Park S, Jung G, Hwang YS, Jin E (2010) Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance. Planta 231:349–360

    PubMed  CAS  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C et al (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    PubMed  CAS  Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    PubMed  CAS  Google Scholar 

  • Pesaresi P, Hertle A, Pribil M (2009) Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21:2402–2423

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot Lond 103:599–607

    CAS  Google Scholar 

  • Pick U, Gounaris K, Weiss M, Barber J (1985) Tightly bound sulpholipids in chloroplast CF0-CF1. Biochim Biophys Acta 808:415–420

    CAS  Google Scholar 

  • Pick U, Weiss M, Gounaris K, Barber J (1987) The role of different thylakoid glycolipids in the function of reconstituted chloroplast ATP synthase. Biochim Biophys Acta 891:28–39

    CAS  Google Scholar 

  • Prásil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48:395–410

    Google Scholar 

  • Premvardhan L, Robert B, Beer A, Büchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c(2) proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim Biophys Acta 1797:1647–1656

    PubMed  CAS  Google Scholar 

  • Pyszniak AM, Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin–chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166:208–217

    CAS  Google Scholar 

  • Reger BJ, Krauss RW (1970) The photosynthetic response to a shift in the chlorophyll a to chlorophyll b ratio of Chlorella. Plant Physiol 46:568–575

    Google Scholar 

  • Rosen BH, Lowe RL (1984) Physiological and ultrastructural responses of Cyclotella meneghiniana (Bacillariophyta) to light intensity and nutrient limitation. J Phycol 20:173–183

    Google Scholar 

  • Ruban A, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne A (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165–175

    PubMed  CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA et al (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    PubMed  CAS  Google Scholar 

  • Sato N, Hagio M, Wada H, Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. In: Harwood JL, Quinn PJ (eds) Recent advances in the biochemistry of plant lipids. Portland Press Ltd, London, pp 912–914

    Google Scholar 

  • Savard F, Richard C, Guertin M (1996) The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI/II genes that is regulated during the cell cycle and in response to illumination. Plant Mol Biol 32:461–473

    PubMed  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:57–88

    Google Scholar 

  • Schumann A, Goss R, Jakob T, Wilhelm C (2007) Investigation of the quenching efficiency of diatoxanthin in cells of Phaeodactylum tricornutum (Bacillariophyceae) with different pool sizes of xanthophyll cycle pigments. Phycologia 46:113–117

    Google Scholar 

  • Smith BM, Melis A (1988) Photochemical apparatus organization in the diatom Cylindrotheca fusiformis: Photosystem stoichiometry and excitation distribution in cells grown under high and low irradiance. Plant Cell Physiol 29:761–769

    Google Scholar 

  • Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689–692

    PubMed  CAS  Google Scholar 

  • Sukenik A, Tchernov D, Kaplan A, Huertas E, Lubian LM, Livne A (1997) Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine Eustigmatophyte Nannochloropsis sp. J Phycol 33:969–974

    CAS  Google Scholar 

  • Szábo M, Lepetit B, Goss R, Wilhelm C, Mustardy L, Garab G (2008) Structurally flexible macro-organization of the pigment–protein complexes of the diatom Phaeodactylum tricornutum. Photosynth Res 95:237–245

    PubMed  Google Scholar 

  • Ting CS, Owens TG (1994) The effects of excess irradiance on photosynthesis in the marine diatom Phaeodactylum tricornutum. Plant Physiol 106:763–770

    PubMed  CAS  Google Scholar 

  • van de Poll WH, van Leeuwe MA, Roggeveld J, Buma AGJ (2005) Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). J Phycol 41:840–850

    Google Scholar 

  • Veith T, Büchel C (2007) The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochim Biophys Acta 1767:1428–1435

    PubMed  CAS  Google Scholar 

  • Veith T, Brauns J, Weisheit W, Mittag M, Büchel C (2009) Identification of a specific fucoxanthin–chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochim Biophys Acta 1787:905–912

    PubMed  CAS  Google Scholar 

  • Vieler A, Süß R, Wilhelm C, Schiller J (2007a) The lipid composition of two different algae (Chlamydomonas reinhardtii, Chlorophyceae and Cyclotella meneghiniana, Bacillariophyceae) investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150:143–155

    PubMed  CAS  Google Scholar 

  • Vieler A, Wilhelm C, Goss R, Sub R, Schiller J (2007b) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150:143–155

    PubMed  CAS  Google Scholar 

  • Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169:95–108

    PubMed  CAS  Google Scholar 

  • Walters RG, Ruban AV, Horton P (1994) Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by Dicyclohexylcarbodiimide during inhibition of energy dissipation. Eur J Biochem 226:1063–1069

    PubMed  CAS  Google Scholar 

  • Westermann M, Rhiel E (2005) Localisation of fucoxanthin chlorophyll a/c-binding polypeptides of the centric diatom Cyclotella cryptica by immuno-electron microscopy. Protoplasma 225:217–223

    PubMed  CAS  Google Scholar 

  • Wilhelm C (1993) Some critical remarks on the suitability of the concept of the photosynthetic unit in photosynthesis research and phytoplankton ecology. Bot Acta 106:287–293

    CAS  Google Scholar 

  • Williams WP (1998) The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Murata N, Siegenthaler P-A (eds) Lipids in photosynthesis. Kluwer Academic Publishers, The Netherlands, pp 103–118

    Google Scholar 

  • Yan J, Mao D, Chen H, Kuang T, Li L (2000) Effects of membrane lipids on the electron transfer activity of cytochrome b6f complex from spinach. Acta Bot Sin 42:1267–1270

    CAS  Google Scholar 

  • Zhu SH, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochim Biophys Acta 1797:1449–1457

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a DAAD Post-Doc fellowship (for B.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepetit, B., Goss, R., Jakob, T. et al. Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111, 245–257 (2012). https://doi.org/10.1007/s11120-011-9633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9633-5

Keywords

Navigation